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Abstract— An improved discrete Fourier transform (iDFT)
is presented in this study as a novel feature for surface
electromyogram (sEMG) pattern classification. It employs the
principle that the spectrum of sEMG signals changes regarding
different motions. iDFT feature focuses on global information of
local bands to increase the inter-class distance. The experiment
results showed that iDFT feature had a better separability than
two other spectral features, auto regression (AR) and Power
spectral density (PSD), both on experienced and inexperienced
subjects. The optimal bandwidth is between 30 and 50 Hz
and influence of division methods is not significant. With the
low computation cost and property of insensitivity to sampling
frequency, our proposed method provides a competitive choice
for prosthetic control.

I. INTRODUCTION

Surface electromyogram (sEMG) signal, collected by elec-

trodes attached to the skin, provides an important input

for controlling electrically powered prostheses [1]. Many

commercially available myoelectric systems employ a rela-

tively simple scheme of encoding the amplitude of sEMG to

control prosthetic devices such as a hand or wrist. The major

problem of this approach is that it can not provide sufficient

information to control more than one functions reliably.

However, controlling multiple function is the requirement of

amputees with high-level limb deficiencies [2]. To increase

the number of prosthesis functions, researchers have explored

a pattern recognition-based approach which can extract a

wealth of control information from the sEMG signal [3].

Recently, many State-of-the-art methods have been proposed

to improve the performance of the pattern recognition-based

systems [2],[3].

The myoelectric control scheme based on pattern recogni-

tion includes two major parts: feature extraction and classi-

fication. Previous studies have shown that the representation

of the sEMG signal plays an important role in improving

the performance of myoelectric pattern recognition systems

[4]. Features are classified into three categories: time do-

main, frequency domain, and time-frequency domain [5].

The frequency domain feature is based on the principle that

the spectrum of sEMG signal changes with different limb
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functions. Such features like auto regression (AR) coeffi-

cients, have achieved high classification accuracy. However,

performances of other representations of sEMG spectrum,

such as direct use of Fourier transform [6], mean and medium

frequency based on power spectral density (PSD) [5],[7], are

all inferior to AR.

In this work, we used the Fourier spectrum and improved

the representation based on discrete Fourier transform (DFT)

for sEMG classification. The mechanism of iDFT feature

was investigated and the separability was compared with

two other spectral features, AR and PSD. Two metrics were

introduced to quantify feature space changes between AR

and iDFT. Then, we studied the influences of bandwidth and

sampling frequency. Finally, some issues were discussed and

a conclusion was drawn.

II. METHODOLOGY

A. Algorithm

According to literature [8], the spectral form of Euclidean

distance between two different AR coefficients of time series

model is given by

d2
AR =

∫ π

−π
|Ht(e

jω )−Hr(e
jω)|2|At(e

jω)|2|Ar(e
jω )|2dω/2π .

(1)
where

Ax(e
jω ) = 1+

P

∑
i=1

axie
− jiω . (2)

axi being AR coefficients, x denoting t or r.

Ht(e
jω) and Hr(e

jω) in (2) are the Fourier transforms of

the test and reference signals respectively. It shows that the

distance between two different AR coefficients in frequency

domain is dominated by the difference of Fourier transforms

of two signals, comparing the amplitude at the specific point.

AR feature focuses on local information of sEMG spectrum.

Other representations like mean and medium frequency,

focus on the global spectrum, neglecting its local informa-

tion. This makes some details lost and degrades performance

[5].

Enlightened by these two methods, we proposed a new

representation based on DFT, iDFT, to better extract infor-

mation form sEMG spectrum.

After calculation of DFT, the spectrum is divided into

L segments. Suppose that starting frequency and ending

frequency of the ith segment are fi,1 and fi,ni
. Compute
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average amplitude of the segment and apply a non-linear

logarithm transform to the value to ensure smoothness. iDFT

feature is given by

iDFTi = log(
ni

∑
j=1

|X( fi, j)|

ni

), i = 1,2, · · · ,L. (3)

Consider the following spectral measure

d2
iDFT =

L

∑
i=1

[iDFTti− iDFTri]
2

=
L

∑
i=1

{log[
ni

∑
j=1

|Xt( fi, j)|/ni]− log[
ni

∑
j=1

|Xr( fi, j)|/ni]}
2

(4)

We can see in (4) that it is the global information of a

local band that iDF pays attention to, neither global nor

local information of the entire spectrum. It tries to make a

balance between two extremes. So the length of segments is

important. Good segmentation will hide differences within

the same class, and on the other hand, keep differences

between different classes. Meanwhile, since only average

value is calculated, the influence of sampling frequency,

which dominates frequency resolution, has a little impact

on classification.

B. Data Collection

Four able-bodied subjects (three males, one female, aged

from 20 to 30 years old) participated in the study. Two of

the subjects had no prior experience of EMG experiments.

And the other two were experienced. Informed consent

was obtained from the subjects and the procedures were in

accordance with the Declaration of Helsinki.

Ten classes of wrist and hand motions plus a class of

no movement were considered in the study. The ten motion

classes were hand and wrist motions, pronation, supination,

hand closing, hand opening, radial flexion, ulnar flexion,

flexion, extension, palmar prehension and lateral prehension.

The commercial myoelectric system, TrignoTM Wireless

system (Delsys Inc., 20-450 Hz band pass filter), was used

to collect EMG data. Four wireless electrodes were placed

around the circumference of the forearm one-third of the

distance from the elbow to the wrist, which is shown in

Fig. 1. They were located on the extensor carpi ulnaris,

flexor carpi radialis, extensor carpi radialis longus, flexor

carpi ulnaris, respectively. The sampling frequency was set

to 2 kHz. During the experiment, all participants naturally

extended their arms toward the ground. They were instructed

to perform each motion sequentially with a comfortable and

consistent level of effort. EMG data were collected in twenty

consecutive trials. In each trial, one motion was held for 4 s

and all the motions were repeated once. Only the steady state

was recorded. There was a 4 s rest between two neighboring

motion classes to avoid fatigue.

200 ms analysis windows were used with 50 ms of overlap.

In this way 13860 samples were obtained for each subject.

This was enough for a proper statistical evaluation.

(a) (b)

Fig. 1. Placement of electrodes on the forearm: (a) anterior view, (b)
posterior view.

III. RESULTS

A. Evaluation of separability of features

In this study, the sixth-order AR model was chosen for

it was commonly used. The influence of model order on

the recognition rate was investigated in literature [8] and it

showed the recognition rate would be slightly improved as

the order increased. So the eleventh-order was addressed.

And another frequency domain feature set, mean frequency,

variance and average amplitude based on PSD [7], was also

compared.

Since the signal was band-pass filtered (20-450Hz), the

frequency band was divided into six segments, which were

20-92Hz, 92-163Hz, 163-235Hz, 235-307Hz, 307-378Hz,

378-450Hz. Each was about 70Hz. Linear discriminant anal-

ysis (LDA) classifier was selected for its low computation

cost. The second-order cross validation method was used for

the evaluation of recognition rate. Results are showed in Fig.

2, where ES1, ES2 represent the experienced subjects and

IE1 and IE2 are the inexperienced. It can be seen that the

error rate of iDFT feature is lower than AR11, AR6 and

PSD, independent of experience.

The motions generated by subjects with and without

experience are different [9]. Its influence should be taken into

account. So a two way ANOVA was applied on the error rate

using the features and subjects as factors. The significance

level was 0.0231, 0.0374, and 0.0391 for iDFT with AR11,

AR6 and PSD, respectively. It showed that the performance

of iDFT feature was significantly better than the others.
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Fig. 2. Error rate of different features for each subject. ES1, ES2 are
experienced and IE1 and IE2 are inexperienced.

The separability may be improved by reducing intra-

class variability or by increasing inter-class distance. To
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quantify the changes of feature space, two metrics, the inter-

class distance and intra-class distance, were introduced. The

distance between class i and j is defined as:

Di j =
1

2

√

(ci− c j)(
Si + S j

2
)−1(ci− c j) (5)

where ci and c j are the centroid of class i and j, Si and S j

are the covariance of two classes respectively.

The inter-class distance is defined as:

DT =
1

C

C

∑
j=1

(min
i6= j

Di j) (6)

where C is the number of class.

The intra-class distance is defined as:

DA =
1

C

C

∑
i=1

1

ni

ni

∑
k=1

√

(vik− ci)(Si)−1(vik− ci) (7)

where ni is the number of feature vectors in class i, vik is

the kth feature vector of class i. A higher DT and a lower

DA results in a better classification performance.

Mahalanobis distance not Euclidean distances are used to

avoid the influence of different units. Only iDFT and AR6

are considered for the affect of feature dimension. The inter-

class and intra-class distances are showed in Table I and

Table II respectively.

TABLE I

INTER-CLASS DISTANCE OF DIFFERENT FEATURES FOR EACH SUBJECT

ES1 ES2 IE1 IE2

iDFT 8.72 9.26 6.82 7.82
AR6 8.29 8.89 6.12 6.76

TABLE II

INTRA-CLASS DISTANCE OF DIFFERENT FEATURES FOR EACH SUBJECT

ES1 ES2 IE1 IE2

iDFT 5.03 5.25 5.27 5.09
AR6 5.01 5.07 5.12 5.61

It can be seen in Table I that the inter-class distance

of iDFT feature is larger than AR6. However, the intra-

class distance of iDFT is also larger than AR6. It means

iDFT feature increases the classification performance by

enlarging the distance between classes. Meanwhile, the intra-

class dispersion is also a little increased, but its degree is not

as great as inter-class. So the separability is improved.

B. Influence of parameters of iDFT feature

The number and the length of segments are two important

parameters of iDFT feature.

With the same length of all the segments, 11 different

bandwidths, ranging from 5 Hz to 430 Hz, are chosen to find

the optimal bandwidth. In Fig. 3, we can see that the optimal

bandwidth of four subjects lies in the middle, approximately

between 30 Hz and 50 Hz. The influence of big bandwidth

is greater than the small bandwidth.
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Fig. 3. Error rate of different bandwidth for each subject. The entire band
is from 20 Hz to 450 Hz and it is divided equally.

Then, the number of segments is fixed to six to find the

difference between different methods of band division. Three

methods are introduced. The first method is that the low-

frequency band is divided intensively, which labeled as low-

frequency. The second is that the high-frequency band is

divided intensively, labeled as high-frequency. The third is

that the entire band is divided equally, labeled as medium-

frequency. All the frequency boundary points are shown in

Table III.

TABLE III

FREQUENCY OF BOUNDARY POINTS OF THREE DIFFERENT METHODS

Low-frequency 20 32 68 128 211 319 450
Medium-frequency 20 92 163 235 307 378 450

High-frequency 20 151 259 343 402 438 450

The error rates of all three methods can be seen in Fig.

4. The performance of medium-frequency method is slightly

better than the other two, but none of three has the advantage

over the others. A two way ANOVA is applied using the

methods and subjects as factors. The result (p = 0.7604)

shows there is no significant difference in performance

between the band division methods. For computation con-

venience, the medium-frequency method is recommended.

C. Influence of Sampling Frequency

The signal is down-sampled to 1000Hz to evaluate the

influence of sampling frequency. Other processing proce-

dures are the same. Fig. 5 shows the comparison of error

rate between data of different sampling frequencies. For

AR6 and AR11 feature, error rates with 1000 Hz sampling

frequency are much greater than 2000 Hz. The reduction

of sampling frequency has an impact on the performance of

AR feature. However, as for iDFT and PSD feature, the error

rates are nearly identical. They are not sensitive to sampling

frequency.
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Fig. 4. Error rate of different band division methods for each subject.
Low-frequency means the low-frequency band is divided intensively. High-
frequency means the high-frequency band is divided intensively. Medium-
frequency means the band is divided into six parts equally.
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Fig. 5. Comparison of error rate of different sampling frequency for four
features.The methods and parameters keep the same.

IV. DISCUSSION

Bandwidth was an important parameter of iDFT feature.

As the band was represented by its average amplitude,

information of the specific point was lost. At first, informa-

tion mainly about differences within the motion class were

ignored, which decreased the error rate. As the bandwidth

increased, information of differences between classes was

lost, too. Then error rate began to rise. We can see form

Table I and Table II that iDFT feature mainly enlarged the

inter-class distance to improve performance. Previous study

showed that inter-class distance of experienced subjects was

larger than that of inexperienced subjects, while their intra-

class distances were similar [9]. So the effect for inexpe-

rienced subjects was more significant than the experienced,

when bandwidth increased from 5 Hz to 40 Hz in Fig. 3.

More information was kept if a frequency band is divided

intensively. So different division methods keep information

of different bands. However, results were not significant

in Fig. 4. It meant that in this study, the discriminative

information of sEMG signal lied in the entire band.

As it is known, reduction of sampling frequency would

bring about the decrease of frequency resolution. It had an

effect on the estimation of local spectrum information. So

error rates of AR feature increased dramatically. However,

it had little effect on the estimation of global information.

Thus, performances of iDFT and PSD were similar.

We noted that the similar feature was used in [6] and its

performance was not as good as AR11, which was opposite

to our results. There existed differences. In their work, the

bandwidth was only 12.5 Hz and was chosen heuristically,

without any analysis. The bandwidth was obviously not

enough according to our results. To our best knowledge

this was the first time to analyze the separability of iDFT

feature and influence of its parameters. Meanwhile, we took

the logarithm to ensure the smoothness and enhanced the

stationarity of the data, which would help increase the

recognition rate further.

The computation cost was an important issue for the

myoelectric prosthesis control. The long processing time

could cause large controller delays which would degrade

the prosthesis performance. The proposed method had the

advantage of convenient implementation with the use of fast

Fourier transform (FFT) algorithms. With low misclassifi-

cation error and insensitivity to sampling frequency, iDFT

feature was a promising feature for prosthetic control.

V. CONCLUSIONS

This work presented a good representation based on sEMG

spectrum, iDFT. It focused on the global information of

local band and achieved a better separability than two other

frequency domain features, AR and PSD. The insensitivity

to sampling frequency and low computation cost made the

proposed feature a good option for prosthetic control.
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