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Abstract—The seismocardiogram (SCG) signal traditionally 

measured using a chest-mounted accelerometer contains low-

frequency (0-100 Hz) cardiac vibrations that can be used to 

derive diagnostically relevant information about cardiovascular 

and cardiopulmonary health. This work is aimed at 

investigating the effects of respiration on the frequency domain 

characteristics of SCG signals measured from 18 healthy 

subjects. Toward this end, the 0-100 Hz SCG signal bandwidth 

of interest was sub-divided into 5 Hz and 10 Hz frequency bins 

to compare the spectral energy in corresponding frequency 

bins of the SCG signal measured during three key conditions of 

respiration—inspiration, expiration, and apnea. Statistically 

significant differences were observed between the power in 

ensemble averaged inspiratory and expiratory SCG beats and 

between ensemble averaged inspiratory and apneaic beats 

across the 18 subjects for multiple frequency bins in the 10-40 

Hz frequency range. Accordingly, the spectral analysis methods 

described in this paper could provide complementary and 

improved classification of respiratory modulations in the SCG 

signal over and above time-domain SCG analysis methods.  

 

Index Terms — seismocardiography, spectral analysis, 

frequency-domain representation, power spectral density, 

respiration, apnea, accelerometer. 

 

I.  BACKGROUND AND INTRODUCTION 

The high incidence of cardiovascular disease and its 

impact on health-care costs in the United States has resulted 

in a growing need for and interest in affordable home-health 

monitoring solutions for cardiovascular diagnostics and 

personalized disease management outside hospital settings 

[1-3]. 

Miniature, low-cost MEMS accelerometers have been 

shown to detect seismocardiogram (SCG) signals that 

contain features corresponding in timing to cardiac events 

such as the closing of the mitral and aortic valves [4]. These 

events, in turn, correspond in timing to the second 

components of the S1 and S2 primary heart sounds 

traditionally measured on phonocardiograms. The SCG 

signals obtained from accelerometers can provide 

diagnostically relevant information about cardiovascular and 

 
K. Pandia was supported in part by Texas Instruments, Inc. 

K. Pandia and O. T. Inan are with the Department of Electrical 

Engineering, Stanford University, Stanford, CA, 94305 USA (e-mails: 

keya.pandia@stanfordalumni.org, oeinan@gmail.com). 

G. T. A. Kovacs is with the Department of Electrical Engineering and 

(by courtesy) the School of Medicine, Stanford University, Stanford, CA 

94305 USA (e-mail: kovacs@cis.stanford.edu). 

respiratory health. In the time-domain, the respiratory 

modulation of heart sounds results in amplitude and timing 

changes in the S1 and S2 features of the SCG [5]. The 

resulting time-domain parameters derived from the SCG have 

been demonstrated to provide physiologically insightful 

information about the complex interactions between the 

cardiovascular and pulmonary systems [5].  

This work extends the analysis of the respiratory 

modulation of the SCG signal by investigating the effect of 

respiration on the frequency-domain representation of the 

SCG signal. This frequency-domain analysis of the SCG 

signal provides a complementary approach to the time-

domain signal analysis methods for deriving physiologically 

useful information regarding the complex cardiopulmonary 

interactions from the SCG signal. Additionally, the use of 

modern digital signal processing technology to implement 

these frequency-domain methods could provide improved 

feature discrimination and classification with simpler 

circuits. 

 

II. METHOD 

A. System Design 

The dorso-ventral SCG signal was obtained from human 

subject volunteers using a miniature MEMS accelerometer 

(LIS3L02AL, STMicroelectronics, Geneva, Switzerland).  

The SCG signal was preconditioned using a custom analog 

front end [5]. A lead-II electrocardiogram (ECG) and a 

respiration effort belt signal were also acquired concurrently 

using custom analog electronics and data acquisition system 

described in [5]. The SCG, ECG, and respiration signals 

thus acquired were recorded and stored for further 

processing using custom software (Matlab
®
, Version 2007b, 

The Mathworks, Natick, MA). 

 

B. Human Subject Protocol 

Twenty healthy human subjects (twelve male, eight 

female) were recruited for this study under the protocol 6503 

approved by the Stanford Institutional Review Board. Data 

from two subjects (one male, one female) were not 

considered for this analysis due to poor reference respiration 

signals in both cases. The subject demographics (mean, 

standard deviation) were: age (28.9, 5.9 years), height (1.71, 

0.11 m), and weight (65.9, 12.8 kg). The accelerometer was 

taped on the subjects’ chests on the left mid-sternal area 
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along the mid-clavicular line; ECG electrodes were affixed 

to the subjects’ torso to capture a lead-II electrocardiogram 

signal and a respiration belt was attached to their upper torso 

to acquire a reference respiration signal. The subjects were 

asked to sit comfortably in a chair and to breathe normally 

for 60 seconds followed by a 15 second period of breath 

hold (apnea).  

 

C. Signal Processing and Signal Analysis 

The dorso-ventral SCG signal obtained from the chest-

mounted accelerometer was digitally low pass filtered at 100 

Hz to limit sensor noise above the frequency range of 

interest. The SCG signal was then digitally high pass filtered 

at 0.5 Hz to attenuate the low frequency baseline variation 

caused by respiratory chest wall movement. Finally, a 60 Hz 

notch filter was used to eliminate line interference in the 

SCG signal. The respiration belt signal was low pass filtered 

at 0.5 Hz; the ECG signal at 50 Hz.  

During the first 60 seconds of normal breathing, the 

respiration signal was used to obtain a mean respiration rate 

and respiration interval for each subject. The SCG signal 

was sub-divided into consecutive frames—each frame 

spanning the duration of the mean respiration interval for the 

corresponding subject and normalized in amplitude with 

respect to the maximum amplitude of the signal in the frame. 

For a given respiration cycle, the S1 heart sound is at its 

highest amplitude during the expiratory phase and at its 

lowest amplitude during the inspiratory phase [5-6]. These 

findings were congruent with time stamps for the start of 

inspiration and expiration phases annotated by subjects 

during the course of the measurement. Consequently, for 

each frame, the SCG beat corresponding to the highest S1 

amplitude was used as the expiratory beat for that frame and 

the beat corresponding to the lowest S1 amplitude was 

considered the inspiratory beat. For each subject, an 

ensemble average of expiratory beats was computed by 

averaging all of the expiratory beats for that subject during 

the 60 seconds of normal breathing. An ensemble average of 

inspiratory beats was similarly computed for each subject. 

The S1 peaks for each frame were detected using an S1 peak 

detection algorithm described in [7]. Similarly, during the 15 

second interval of breath hold (or apnea), for each subject, 

an ensemble average was computed for all SCG beats during 

the interval of breath hold.  

A spectrogram plot was constructed for visual analysis of 

the time-frequency characteristics of the SCG signal during 

the first 30 seconds of regular breathing. A one second 

 
Figure 1: Figure showing 30 seconds of concurrently recorded time traces of an ECG, SCG, and reference respiration 

belt signal (INSP and EXP represent the start of the inspiratory and expiratory phases as annotated by a subject 

participating in the study); and a spectrogram (time-frequency representation) of the 30 second recording of the SCG. 
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window with a 0.5 second overlap between windows was 

used to compute the spectrogram. 

Furthermore, a power spectrum of each of the 

inspiratory, expiratory and apneaic ensemble averaged beats 

was constructed for every subject. The aggregate power 

spanning 0-100 Hz was computed with frequency bins 

spaced 10 Hz apart; similarly, the aggregate power in 5 Hz 

frequency bins spanning 0-50 Hz was computed for each 

subject. Finally, a composite measure of power across all 18 

subjects was computed by averaging the power in each of the 

abovementioned corresponding frequency bins for the 18 

subjects. The composite power in each of the frequency bins 

corresponding to the inspiratory phase was then compared to 

the composite power in the corresponding bins in the 

expiratory phase and the apneaic phase. The statistical 

significance of the differences was computed using 

Student’s t-test (threshold of p < 0.05, corrected for multiple 

comparisons using the Holm–Bonferroni method [8]). 

 

III. RESULTS AND DISCUSSION 

A. Visual Inspection of the Time-Frequency Characteristics 

of the SCG Signal 

The concurrently recorded time traces of the ECG, SCG, 

and respiration effort belt signals for a single subject during 

30 seconds of regular breathing are shown in Figure 1. As 

shown alongside the time traces, the spectrogram plot of the 

SCG signal shows modulations in the frequency content of 

the SCG signal that correlate in periodicity with the 

respiration belt signal. As evident from Figure 1, the 

periodic maxima in spectral power coincide in timing with 

the expiratory phases of the respiration cycles. This finding 

is congruent with previous results demonstrating maximal S1 

amplitude during expiration and minimal S1 amplitude 

during inspiration [5-6].  

 

B. Visual Inspection of the Signal Ensemble Averages and 

Power Spectral Densities 

As shown in Figure 2, the expiratory ensemble average 

for a single subject as well as the corresponding power 

spectral density show greater amplitude and power in the 

expiratory beat compared to the inspiratory beat. 

Furthermore, the energy in the apneaic ensemble average is 

greater than the energy in the inspiratory ensemble average; 

but is closer to the energy in the expiratory beat ensemble 

average.  

 

C. Statistical Analysis of the Signal Power Distributions 

As shown in Figure 3, the signal ensemble average power 

for each of the respiratory phases—inspiration, expiration 

and apnea—is concentrated in the sub-50 Hz frequency 

range.  Accordingly, the signal power in the frequency span 

from 0-50 Hz was further investigated with a finer (5 Hz) 

frequency resolution (see, Figure 4). 

 
Figure 2: Figure showing ensemble averages and 

corresponding power spectra obtained for a single subject 

during inspiration, expiration, and apnea. (The power 

spectral density is shown in normalized arbitrary units.) 

 

As shown in Figures 3-4, the composite power 

distribution of the SCG signal across the 18 subjects during 

the inspiratory phase when compared to each of the 

expiratory and apneic phases showed statistically significant 

differences in multiple frequency bins (primarily between 

10-40 Hz) spanning the 0-100 Hz frequency range 

(significant differences relative to the inspiratory beat power 

for the respective frequency bin are shown with an asterisk 

in Figure 3). Similarly, significant differences were also 

observed for multiple frequency bins in the 0-50 Hz 

frequency range (significant differences relative to the 

inspiratory beat power for the respective frequency bin are  

 

 

 
Figure 3: Statistical analysis of spectral energy between 

0-100 Hz with 10 Hz frequency spacing measured across 

the 18 subjects during inspiration, expiration, and apnea. 

(The Y-axis represents power spectral density in 

normalized, arbitrary units.) 

* 
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Figure 4: Statistical analysis of spectral energy between 0-50 

Hz with 5 Hz frequency spacing measured across the 18 

subjects during inspiration, expiration, and apnea. (The Y-

axis represents power spectral density in normalized, 

arbitrary units.) 

 

shown with an asterisk in Figure 4). These findings are in 

agreement with the power concentration in the periodic 

expiratory phases as shown in the spectrogram in Figure 1. 

Additionally, as illustrated in Figures 3-4, the power 

spectral density of the inspiratory ensemble average showed a 

peak in the 0-9 Hz range and the inspiratory beat power was 

observed to have a decreasing trend with increasing frequency 

toward 100 Hz. On the other hand, for the expiratory and 

apneic beats, the power spectral density peaks in the 10-19 

Hz range and decreases in the frequency range below 10 Hz 

and above 20 Hz. Furthermore, the power in the apneaic beats 

was found to be higher than the corresponding power in the 

inspiratory or expiratory beats for a majority (9 out of 10 in 

each case) of the frequency bins considered in the 0-100 Hz 

frequency range as well as in the 0-50 Hz frequency range.  

 

IV. CONCLUSION AND FUTURE WORK 

 

With an aim to understand the spectral variations in the 

SCG signal as a function of respiration, this work investigates 

the spectral power in ensemble averaged SCG beats measured 

during three key conditions of respiration—inspiration, 

expiration, and apnea. The ensemble averaged SCG beats 

measured during each of these three phases across 18 healthy 

subjects were compared visually in the time-domain and 

statistically in the frequency-domain to investigate variations 

in the spectral characteristics of the SCG signal due to 

respiration. 

Statistically significant differences were observed between 

various frequency components (spectral bins) computed for 

the inspiratory ensemble average when compared to the 

corresponding frequency components measured during 

expiration and during apnea. The power in the ensemble 

averaged expiratory beat was found to be greater than the 

power in the ensemble averaged inspiratory beat across the 18 

subjects, with the difference being statistically significant for 

several frequency bins. Furthermore, the spectral energy for 

the ensemble averaged apneaic beat was significantly greater 

than the corresponding power in the inspiratory SCG beat for 

multiple frequency bins in the frequency ranges considered. 

These results indicate that in addition to the time-domain 

methods for analyzing and classifying respiratory variations 

in the SCG signal, the frequency-domain methods described 

above could provide complementary information regarding the 

respiratory modulation of the SCG caused by physiologically 

complex cardio-pulmonary interactions. 

Future work will focus on expanding these methods to 

investigate differences in the respiratory frequency 

characteristics of the SCG in disease populations (e.g., in 

patients in cardiovascular, pulmonary, or cardiopulmonary 

disease) when compared to healthy populations. Furthermore, 

the effects of inter-subject bias (e.g., due to varying 

respiration rates across subjects) and sampling bias (e.g., due 

to the non-uniformity in cardiac timings relative to the 

respiration waveform) on the computed frequency responses 

will be investigated.   
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