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Abstract— Single Channel Blind Source Separation (SCBSS) 

is an extreme case of underdetermined (more sources and fewer 

sensors) Blind Source Separation (BSS) problem. In this paper, 

we propose a novel technique using Local Mean Decomposition 

(LMD) and Independent Component Analysis (ICA) combined 

with single channel BSS (LMD_ICA). First, the LMD was used 

to decompose the single channel source into a series of data 

sequences, which are called as Product Functions (PF), then, 

ICA algorithm was used to process PFs to get similar 

independent components and extract the original signals. A 

comparison was made between LMD_ICA and previously 

proposed single channel ICA method (EEMD_ICA). The real 

time experimental results demonstrated the advantage of the 

proposed single channel source separation method for artifact 

removal and in biomedical source separation applications. 

I. INTRODUCTION 

Single channel source separation is one of the challenging 
tasks in Blind Source Separation (BSS) technique. It uses the 
technique to restore the original source signals from one 
sensor, and it has large potential applications in many areas, 
including communication engineering, biomedical signal 
denoising, audio signal processing, etc. [1].  

In recent years, many researchers have proposed several 
algorithms to tackle this problem. A maximum likelihood 
approach was proposed to separate two music signals and 
two sounds, which needed to learn a priori sets of time-
domain basis functions of sound sources [2]. So, un-
supervised BSS algorithms were proposed. Adaptation of 
Bayesian models for single-channel source separation was 
introduced to separate audio, and it can perform better than 
non-adapted models [3]. Nonnegative matrix factorization 
was used to factorize the magnitude spectrogram of an input 
signal and then parameters of the components are estimated 
by minimizing the reconstruction error between the input 
spectrogram and the model [4]. However, the model methods 
needed to train the prior parameters, which required more 
computation time [5, 6]. 

Independence component analysis (ICA) has been proved 
to be a very powerful tool in BSS, when the number of 
sensors is greater or equal to the number of source signals. 
Many researchers changed single-channel signal into pseudo- 
Multi-Input and Multi-Output (MIMO) mode, then each 
source signal was separated via ICA. Single channel ICA 
(SCICA) was first proposed by Davies [7]; it can mainly 
separate the source signals which have disjoint spectral, e.g., 
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maternal/fetal ECG signal, however, it failed to separate the 
two signals. Another technique, Singular Spectrum Analysis 
(SSA) is used to process the single channel signal, then ICA 
is used to separate the independent components, 
unfortunately, this method needs to determine a right window 
length for constructing the pseudo-MIMO [8]. Bogdan 
Mijovic proposed an algorithm, which combines Ensemble 
Empirical-Mode Decomposition (EEMD) and ICA to 
successfully separate overlapped spectrum signals [9]. The 
algorithm first uses the EEMD to decompose the single 
channel into a series of data sequence called Intrinsic Mode 
Functions (IMFs) and then ICA was applied to IMFs to 
generate independent components. However, when ICA was 
used to process IMFs, it failed to converge even with 
maximum iterations.  

Local Mean Decomposition (LMD) is recently proposed 
by J. S. Smith [10] to process Electroencephalogram (EEG) 
signal, as well as EMD, a data-driven tool to process 
nonlinear and non-stationary signal. In [11, 12], LMD was 
compared with EMD, the result shows that LMD is suitable 
and have better performance than EMD in the incipient fault 
detection. In this paper, we propose a novel single channel 
source separation algorithm combining the LMD and ICA. 
To verify the validity of this algorithm, real-life biomedical 
examples are analysed. 

The rest of the paper is organized as follows: the basic 
principle of LMD is described in Section 2. In section 3 the 
novel single channel BSS method is introduced. In Section 4, 
the results and analysis of the real life biomedical 
experimental results are presented. Finally, in section 5, we 
summarize our algorithm and give suggestions for the future 
work.  

II. LOCAL MEAN DECOMPOSITION  

The LMD method is an effective tool to analyse nonlinear 
and non-stationary signals which can be used for analysis of a 
wide variety of natural signals such as EEG, Functional 
Magnetic Resonance Imaging (FMRI) data, and earthquake 
data, etc. The main principle of LMD method is decomposing 
a multi-component modulation signal into a series of 
frequency modulated signals and envelope components 
known as local magnitude functions. The LMD is briefly 
described as follows [11]. 

i. To process the original signal ),(tx calculate the mean 

of the successive maximum and minimum ckn , and 

1, �ckn  which determine the local mean value ckim ,, . 

Here, ckia ,, is the local magnitude, ‘c’ is the index of the 

extrema, ‘i’ denote the order of product function (PF) 
and ‘k’ is the iteration number in a process of PF. 
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ii. Interpolate straight lines of local mean kim ,  and local 

magnitude values kin , , then  moving average filter is 

used to Smooth the interpolated local mean and local 
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iv. Envelope function, q denotes the number of iterations 
for computing the PF. The corresponding 

instantaneously phase (IP) is � �� �tst pii ,arccos)(  M  and 

instantaneous frequency is (IF)
dt

d
tf i

i

M
 )( . 

v. With the envelope function )(
~

tai and the final 

frequency demodulated signal, the product function 

(PF) is written as � �tstaPF piii

~

,)( u . 

vi. Then � � � � ii PFtxtu �  is treated as the smoothed 

version of the new � �tx  and the procedure is repeated 

from i to v, until � �tui is a monotonic function. The final 

result can be expressed as � � � � )(

1

tutPFtx p

p

i

i � ¦
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III. ICA ALGORITHM AND SIGNAL RECONSTRUCTION  

The goal of ICA is to separate mixed signals from the 
mixed matrix ‘x’ into their independent sources ‘s’, without 
prior knowledge, such that x = Ms, where M is called the 
mixing matrix. It is possible to estimate the contributing 
sources from the mixtures provided; they are statistically 
independent of each other. In our research, the FastICA 
algorithm [13] which has been proved to be fast and robust 
was used to separate mixed signals. The steps of the whole 
SCBSS are as follows:  

i. The LMD algorithm is applied to the mixed signal to 

obtain a series of PFs which are the input signals of 

FastICA algorithm. 

ii. After the FastICA algorithm, a series of independent 

components are obtained as well as estimated mixing 

matrix M and unmixed matrix W. Then similar 

components of source signal’s independent 

components are extracted. 

iii. Select the interested independent components and 

multiply with the estimated mixing matrix M and a 

new series of PF components are derived. 
 

Add all the newly derived PFs to get one reconstructed 
source signal. The other source signals are reconstructed in 
similar way. 

IV. SIMULATION RESULTS AND DISCUSSION  

In order to validate the effectiveness of the proposed 
method, we designed two different experiments, which are 
explained as below: 

 In this section, the novel SCBSS algorithm is used to 
separate the single channel sensor signal which is mixture of 
Electrocardiogram (ECG) and Electromyography (EMG). All 
simulations and analyses are performed using MATLAB 
programming language. The surface EMG (sEMG) signal is a 
kind of important biological electric signal produced with the 
muscle activity, which has been widely used in clinical 
muscle disease diagnosis, sports science, rehabilitation 
engineering and gesture recognition [14] etc. For the large 
overlap between the ECG interfere spectrum and of the 
sEMG signal (5-500Hz for sEMG, 0-75Hz for ECG), it is 
hard to extract sEMG signal from mixed signal using normal 
filter.  

 In this experiment, ECG artifact was removed from 
sEMG signal. We used the LMD-ICA and EEMD-ICA to 
remove ECG signal from sEMG signal respectively. To 
evaluate the proposed algorithm, we adopt the same criteria 
as in [9]; ECG and sEMG signals were mixed by the model 
as equation (3), 

     )()()( tbtatx O�             (3)                       

where )(tx  is the mixed single channel signal, )(ta  is the 

sEMG, and )(tb  is the noise signal which is ECG signal. The 

Noise to Signal Ratio (NSR) which is an important measure 
is defined as follows: 

� �
� �)(
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taRMS

tbRMS
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O
                (4)                       

The performance of the simulation is relative root mean 
squared error (RRMSE) which is explained as follows: 
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taRMS

tataRMS

RRMSE           (5) 

where )(
~

ta  is estimated signal, )(xRMS  equals to root mean 

square. 

 We obtained the ECG signal from MIT/BIH database, 
and the sEMG signal is achieved from our self-made 
equipment which we have obtained national patent [15] as 
shown in Figure 1. 
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