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Abstract—This paper presents an efficient VLSI 

implementation of on-line recursive ICA (ORICA) processor for 

real-time multi-channel EEG signal separation. The proposed 

design contains a system control unit, a whitening unit, a 

singular value decomposition unit, a floating matrix multiply 

unit and, and an ORICA weight training unit. Because the input 

sample rate of the ORICA processor is 128 Hz, the ORICA 

processor should produce independent components before the 

next sample is input in 1/128 s. Under the timing constraints of 

commutating multi-channel ORICA in real time, the design of 

the ORICA processor is a mixed architecture, which is designed 

as different hardware parallelism according to the complexity of 

processing units. The shared arithmetic processing unit and 

shared register can reduce hardware complexity and power 

consumption. The proposed design is implemented used TSMC 

90nm CMOS technology with 8-channel EEG processing in 128 

Hz sample rate of raw data and consumes 2.827 mW at 50 MHz 

clock rate. The performance of the proposed design is also shown 

to reach 0.0078125 s latency after each EEG sample time, and 

the average correlation coefficient between the original source 

signals and extracted ORICA signals for each 1s frame is 0.9763. 

 

I. INTRODUCTION 

Electroencephalogram (EEG) is a noninvasive tool for 
measuring the electrical activity in the brain, and to date has 
found many useful applications in the medical, consumer and 
entertainment industries. Brain-computer interface systems 
allow people suffering from severe motor disabilities to 
control external devices without moving by using EEG signals. 
However EEG signals are very weak, and thus often 
contaminated by various noise such as eye movement, EMG 
and electrical noise from nearby instruments. Fortunately, this 
problem can be alleviated by independent component analysis 
(ICA), which separates artifacts and noise from the measured 
EEG signals[1]. To date, many ICA algorithms, such as 
Infomax [2], extended Infomax [3], JADE [4], and FastICA [5] 
have been proposed. These ICA algorithms are not suitable 
for online implementation in a real-time setting. Since on-line 
recursive independent component analysis (ORICA) [6] has a 
fast convergence rate and satisfactory separation performance 
which those ICA algorithms could not achieve, it is suitable 
for online implementation with only a low additional 
computational load. However, the complexity computation of 
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ORICA is so intense that real-time ORICA analysis in not 
feasible for a PC-based implementation. Du [7] presented a 
comparative survey of very large scale integration solutions to 
ICA. Therefore the VLSI hardware implementation of 
ORICA is required to achieve real-time ICA analysis. This 
study proposes an efficient VLSI implementation of ORICA 
processor for real-time multi-channel EEG signal separation. 
Under the timing constraints of commutating multi-channel 
ORICA in real time, the design of the ORICA processor is a 
mixed architecture, which is designed as different hardware 
parallelism according to the complexity of processing units. 
The shared arithmetic processing unit and shared register 
reduce hardware complexity and power consumption. The 
design methods of the proposed ORICA processor are 
provided in this paper. In section II, the algorithms adopted in 
the system are described. In section III, the system 
architecture and design methods are given. Finally, the results 
and conclusions are provided in sections V and VI. 

II. ALGORITHM 

This section describes the algorithms adopted in this 
ORICA processor. Fig. 1 shows the ORICA processing data 
flow. After EEG raw data X are acquired from front-end 
control unit, whitening is performed for the uncorrelated 
vector Z to effectively accelerate the training processing from 
(1) to (3).  
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And then Z is processed to estimate the independent 

component Y and the unmixed weight W  in ORICA training 

as (4) to (9). Finally, W and Y are delivered to UART unit to 
produce the result. 
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III. PROPOSED SVD PROCESSOR ARCHITECTURE AND 

IMPLEMENTATION 

A.  Online Recursive ICA processor 

 The hardware architecture of the ORICA processor 

(shown in Fig. 2) comprises: 1) a system control unit (SCU) 

for saving and controlling the processing data, 2) a whitening 

unit (WU) for calculating  COV_X, 3) a singular value 

decomposition  unit (SVDU) for calculating eigenvalues and 

eigenvectors of the covariance matrix and inverse square root 

matrix, 4) a floating matrix multiplier unit (FMAMU), 5) an 

ORICA weight training unit (ORICAWTU) for processing Z 

to estimate the W and Y, and 6) an output interface delivering 

results ORICA_OUT through the UART unit. The operation 

is described as following. First, the WU performs the 

calculation of COV_X which is the mean and covariance of X, 

and then the COV_X is stored inside the memory. Second, the 

SCU fetches COV_X from memory and delivers it to the 

SVDU to obtain whitening matrix P. Third, the FMAMU 

performs the multiplication of P and X and produces the 

whitened EEG vector Z. After the calculation of whitening, 

the ORICAWTU performs the un-whitened weight W0 

training and Y by processing Z and W. When ORICA weight 

training is completed, W0 and Y are stored inside the memory. 

And then, the SCU fetches Y and W from memory and 

delivers results ORICA_OUT through the output interface 

and the UART unit, and SVDU simultaneously calculates 

whitened weight matrix INSQW0 by processing W0. Finally, 

the multiplication of W0 and INSQW0 are performed through 

FMAMU to obtain the W, and W is stored into the memory to 

update W for the next ORICA processing. 

B. SVD unit 

The hardware architecture and timing analysis of SVDU 
are shown in Fig. 3. In order to reduce the latency of SVD 
operation and avoid extra power consumption, this SVDU 
replaces a duple-port SRAM with two single-port SRAMs in 
storage data. First of all, memory reset circuit stores the data, 
SVD_IN, in different SRAMs. The Angle CORDIC will 
capture the corresponding elements, which are fetched from 
Memory_01 to calculate θL and θR. Then, the specific 
elements are taken by using Vector CORDIC_1 and Vector 
CORDIC_2 from both memories at the same time. After the 
vector CORDIC operation, the SVDU will obtain updated 
elements on the corresponding origin data. However, in order 
to avoid the structural hazard during the renewal of memories, 
this work delayed a few clock cycles to store the updated data 
by using buffers. Furthermore, in terms of timing analysis, the 
execution time per iteration of vectoring mode [8], rotation 
mode and whole SVDU are shown in (10), (11), and (12) 
respectively for multi-channel ORICA processor. 

Tvectoring mode = T0 + Tbuff (10) 

Trotation mode = T1 + T2 +Tbuff (11) 

Ttotal =
8

2
C  × Tvectoring mode × 16 × Trotation mode (12) 

C. Floating matrix multiply unit  

 The FMAMU is designed for hardware sharing resource of 
the system to narrow down chip area and cost. To improve the 
accuracy of multi-channel ORICA processing, the FMMU is 
employed to avoid fraction truncation by using IEEE 754 
format. Each sub-module should transform the fixed point into 
the standard floating point format before calculation. After the 
multiplication is completed, the FMAMU transforms floating 
into fixed point and sends updated data to the corresponding 
sub-module. 
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Fig 1.  The ORICA processing data flow. 
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Fig 2. The hardware architecture of the ORICA processor. 
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Fig 3. The hardware architecture and timing analysis of an SVD unit. 
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D. ORICA Weight training unit 

 The main purpose of the ORICAWTU is to estimate the 
Y and W. Fig. 4 shows the hardware architecture and different 
running states controlled by a finite state machine of the 
ORICAWTU. The ORICAWTU employs one shared divider 
unit, one shared multiplier array, one shared adder array, a 
mirrored nonlinear lookup unit, a kurtosis estimation unit, and 
a learning rate unit. The calculation of ORICA training 
requires many adders and multipliers, so one shared multiplier 
array is composed of 8 16-bit scalar multipliers and one 
shared adder array is composed of 8 32-bit scalar adders. The 
mirrored nonlinear lookup unit is designed to minimize the 
ROM size for the lookups of non-linear function tanh(Y). The 
kurtosis estimation unit identifies the distribution of Y and the 
learning rate unit determines the convergence speed of 
ORICA training. Since the processing units and operation 
flow are well arranged, the ORICAWTU can reach the highest 
performance and real time processing. 

IV. RESULT AND COMPARISON 

The simulated source signal (shown in Fig. 5a) contains 

four independent super-Gaussian signals and four 

independent sub-Gaussian signals, and the maximum 

correlation between each source signal is 0.0032. To verify 

the performance of the proposed design, the simulated mixed 

signal (shown in Fig. 5b) which is a mixture of source signal 

and random matrix performs the extracted ORICA signal 

(shown in Fig. 5c) through the proposed ORICA processor. 

The average correlation coefficient between the source signal 

and extracted ORICA signal for each 1s frame is 0.9763.   To 

verify the performance of real EEG signal separation, the raw 

EEG recorded signals (shown in Fig. 6a) were collected from 

8 scalp electrodes placed according to the international 10-20 

system. The separation result of the recorded raw EEG is 

shown in Fig. 6b. It can be seen that eye blink artifacts are 

exactly separated by using the proposed ORICA processor. 

The real chip and the silicon layout of the proposed ORICA 

processor are shown in Fig. 7. The ORICA processor is 

fabricated using TSMC 90nm CMOS technology. The chip 

gate count, core area and operating frequency of the proposed 

ORICA processor are 0.269 million, 1200 x 1200 μm2 and up 

to 50MHz, respectively. The performance and processing 

results of the proposed design are also shown to reach 

0.0078125 s latency after each EEG sample time. The chip is 

tested by Agilent 9300 and the power consumption is 

2.827mW. The comparisons of this study with others are 

given in Table I. Considering the gate count per channel, the 

proposed ORICA processor has a lower gate count than [9]. 

Similarly, the correlation of this work is higher than [9]. 

Comparing with [10] which has also implemented an 

eight-channel ICA processor, the gate count and power 

consumption of this work are both less than the work of [10]. 

Moreover, the proposed ORICA processor has less output 

latency than the works in [9]-[10], so it can efficiently achieve 

on-line processing in real time. 

 This work achieves higher correlation and lower power 

consumption than the previous work [11] for effective shared 
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Fig. 5a. Source signal. 
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arithmetic processing unit and data arrangement.  

V. CONCLUSION 

This paper presents an efficient VLSI implementation of 

the ORICA processor for real-time multi-channel EEG signal 

separation. The proposed deign is implemented used TSMC 

90nm CMOS technology in 128 Hz sample rate of raw data 

and consumes 2.827 mW at 50 MHz clock rate. The 

performance of the proposed design is also shown to reach 

0.0078125 s latency after each EEG sample time, and the 

average correlation coefficient between the original source 

signals and extracted ORICA signals for each 1s frame is 

0.9763. 
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Fig. 6a. The raw EEG recorded signals. 
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Fig. 6b.  The separation result of raw EEG recorded signals. 
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Fig. 7. (a) The real chip. (b) The silicon layout of the proposed design. 

TABLE I.  COMPARISON WITH OTHER ON-LINE ICA 

IMPLEMENTATIONS 

 
Chen 

[9] 

Van 

[10] 

Shih 

[11] 
This work 

Technology 
UMC 

90nm 

UMC 

90nm 

TSMC 

90nm 

TSMC 

90nm 

Channel 4 8 8 8 

Prepocessing A/V A/V A/V A/V 

Core Size 

(μm2) 

760x 

760 

1221x 

1218 

800x 

800 
1200x1200 

Gate Count 

(million) 
0.199 0.272 0.172 0.269 

Output 

latency(s) 
0.25 0.29 

0.007812

5 
0.0078125 

Power 

Consumption 

(mW) 

0.53 16.35 4.18 2.827 

Correlation 0.9044 >0.95 0.9583 0.9763 

Operating 

Freq. (MHz) 
5 100 50 50 
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