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Abstract— In the last decade, a wide range of approaches
have been proposed to estimate the activity of physiologi-
cal sources from multi-channel electroencephalographic (EEG)
data. Two utterly different directions can be distinguished:
brain source imaging (BSI) and blind source separation (BSS).
While the first approach is based on the inversion of a given
forward model, the latter blindly decomposes the EEG mixing
by optimization of a contrast function excluding any physio-
logical priors on the problem. All these methods have proven
their ability in reconstructing efficiently the source activities
in some well adapted situations. Nevertheless, the synthesis
of a reliable lead field model for BSI is computationally
demanding, and the criterion to be optimized in BSS are often
inadequate with regards to the physiology of the problem. In
this paper, a compromise between these two methodological
trends is introduced. A BSS method is described taking account
of physiological knowledge on the projection of the sources
on the scalp map in conjunction with strong priors on the
localization of the recorded sources. This estimation method is
demonstrated to lead to a generalization of the classical Hjorth’s
laplacian montage, and provides satisfactory simulation results
when the appropriate configurations on the sources are met.

Index Terms— EEG, Source Separation, Smoothness Con-
straint, Laplacian Montage

I. INTRODUCTION

Brain activity recorded by the mean of EEG are commonly

considered to be those of radially-arrayed cortical pyramid

cells [1]. When a sufficient amount of cells within a small

region (or ’patch’) produces near-synchronous field activities,

the resulting cortical field is recorded by the EEG scalp

electrodes. These recorded signals can thus be seen as

the linear sum of near-instantaneously volume conducted

activities of equivalent current dipoles placed in the middle

of compact cortical areas of activated cells.

Two main trends of approaches are to be distinguished

when dealing with brain sources estimation. A first class of

methods assume that a current dipole exists at each mesh of

the discrete cortical surface, with known projection on the

EEG electrodes [2], [3]. These Brain Source Imaging (BSI)

methods, however being popular and widely used in clinical

context, are based on patient-dependent propagation model

yielding high computational cost, and are prone to errors

due to inherent modelling imprecision. A second class of

methods estimate the sources from the EEG measurements,

at the exclusion of any priors on the mixing model. These

Blind Source Separation (BSS) approaches are based on the

definition of a contrast function to be optimized, generally

1 All authors are with the Université de Lorraine, CRAN, UMR 7039,
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a second or higher order independence measure between

the sources [4]. These approaches are known to be efficient

in separating sources of artefacts from the physiological

mixing [5], and it has been recently demonstrated [6] that

some of these methods indeed produce plausible sources, i.e.

sources whose projections on the scalp are almost dipolar.

However, the independence criterion on which these BSS

methods are based makes them irrelevant when considering

correlated brain sources, as it is often the case either in

physiological or pathological configurations [7], [8], [9].

These considerations motivate a source estimation method

less model-dependent and resource demanding than the BSI

approaches, also more physiologically relevant than the BSS

approaches. With this objective in mind, we conjecture that

replacing the independence criterion in the blind separation

procedure by a biologically plausible one will lead to more

physiological source estimates. The assumptions made in

this paper are the following: according to previous physical

studies on the EEG recording setup [10], the activities of

radially-arrayed cortical pyramid cells can be modelled by

an equivalent dipole placed in the middle of this cortex

area. If the size of the activated ’patch’ is sufficient, this

activity is recorded by the EEG sensor situated on the

scalp area covering this ’patch’. As a first step toward our

objective, we will assume that the cortical surface beneath

each EEG sensor can be modelled as a radial dipole, mainly

contributing to the corresponding EEG channel while having

attenuated impact on the neighbouring electrodes. Given

simple electromagnetic approximations, this attenuation can

be estimated, resulting in a smoothness constraint on the

matrix mixing the sources on the sensors.

The paper is organized as follows: section II details the

assumptions made on EEG recordings and describes how the

smoothness constraint is applied on the scalp map projection

of the sources. Section III explains how the sources are esti-

mated and shows how this method generalizes the classical

Hjorth’s laplacian montage [11]. Results on simulated data

are provided in section IV, demonstrating the ability of the

method in reconstructing cortical dipolar sources.

II. SMOOTHNESS CONSTRAINT

A. EEG setup and modeling

The EEG setup consists in electrodes placed at regular

interval on the scalp, covering about half of the head volume,

modelled as a sphere in this paper. Each sensor has 4
neighbours (3 if it is located on the edge). The number

of electrodes depends on the clinical application and can

vary from 8 up to 128 in the case of High Resolution EEG

(EEG-HR). The neuronal generators are widely modelled as
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equivalent current dipoles whose activities S propagate in-

stantaneously and linearly through the anatomical structures

with given propagation coefficients A, resulting in a EEG

multichannel potential mixture X:

X = AS (1)

Considering BSS methods, both A and S have to be blindly

estimated from X, requiring strong assumptions about source

statistical second or higher order independence. In this paper

we will take benefit on neurophysiological priors on the

configuration of the sources and their projections structure on

the scalp EEG: the activities of N equivalent current dipoles

placed beneath and radially pointing toward each EEG sensor

will be estimated, as illustrated on fig.1. A such particular

configuration allows to impose a particular N × N mixing

system A, which should provide dipolar (or at least smooth)

scalp map projections for each source.

D1

C1

D2

D3

D7

D4 D5
D6

C2

C3

C4
C5

C6

C7

Fig. 1. Placement of dipoles with respect to the sensor locations. All
dipoles are beneath the sensors at a given depth, and radial to the surface.

B. Definition of the smoothness criterion

Our main motivation is to develop a source estimation

method that provides biologically plausible results, meaning

that the projections of each estimated source on the scalp

should have a dipolar pattern. This paper is a first effort in

this direction, and the dipolar objective is here simplified to

a smoothness constraint.

Like in the case of most BSS algorithms, and in particular

in the case of Independent Component Analysis (ICA) the

proposed method can be separated in two steps: an initial-

ization step (e.g. decorrelation for ICA algorithms) followed

by the application of a second criterion (independence for

ICA, smoothness in our case). The role of the initialization

step is to pre-condition the data by introducing priors in

concordance with the final objective.

We will derive first the smoothness criterion, which con-

stitutes the main contribution of this work. Considering the

assumptions made in section II-A and following simple

electromagnetic propagation laws, a projection rule of the

dipolar sources on the sensors placed on the scalp is defined.

This leads to a particular type of mixing matrix A and thus

to a particular separation matrix imposing the smoothness

constraint, defined as described further.

Our basic assumption is that the observed potential VM

generated by a dipole DM on its relative sensor decreases

with the square of the distance between them:

VM =
j

K · d2

1

(2)
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Fig. 2. Geometrical approximation of the dipole-electrodes configuration.
VM is the potential recorded by the electrode pointed by the (radially-
oriented) dipole DM , while V (x) is the potential at a distance x from this
maximum potential point.

where j is the amplitude of the current dipole DM , K is

a propagation coefficient and d1 the depth of the source

(dipole). As the sources are assumed to be dipolar and

pointing toward to each of the sensors, and considering

rather small distances between neighbouring sensors, the

geometrical approximation of the fig. 2 is proposed: the

neighbouring sensors with respect to VM are assumed to

be distributed on a plane orthogonal to the direction of the

dipole. This allows to estimate the distance d2 between the

dipole and a neighbouring sensor. Indeed, given the depth

d1 of this source (i.e. the distance to its toward-pointing

sensor) and the known sensor-interval distance x, we can

write d2

2
= x2 + d2

1
. Then equation (2) can be expanded to

compute any potential value produced by DM on this plane:

V (x) = VM

d2

1
cos α

d2

2

(3)

Noticing that cos α = d1

d2

, equation (3) can be written as:

V (x) =
VM

(

x2

d2

1

+ 1
)

3

2

(4)

The values of V (x) computed at the positions of the

electrodes constitute the columns of the target mixing matrix.

In this way, we insure that the scalp potentials generated by

a single dipolar source follows the spatial pattern given by

the equation (4).

An important parameter that determines the shape of

V (x), and thus the projection (mixing) matrix, is the source

depth parameter d1 (see fig. 3). If this depth is assumed to be

known and fixed, the proposed source separation approach

turns into a semi-blind or informed source separation method.

III. SMOOTH SOURCE ESTIMATION

A. Initialization step and smoothing transform construction

Let consider W as a given initial projections matrix. This

matrix could be for example a whitening/sphering matrix, if

we aim to initialize the smoothing with decorrelated source

estimates. Another possible choice would be a matrix con-

taining some prior physiological information (for example

coding a particular grouping of the sources on the cortex).
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Fig. 3. Potential variation on the scalp as a function of the distance x to
the electrode pointed by the dipole and for three different dipole depths d1.

Given an initialization W, the observations X are related

to some sources Z by:

X = WZ

Z = W
−1

X (5)

where Z is an initial source estimation, not necessarily

dipolar (i.e., before applying the smoothness constraint).

In other words, the projection on the scalp of a source

z (i.e., the corresponding column of W) do not always

corresponds to the smooth pattern of a dipolar source. From

this initialization point, we need to derive a new matrix

LW which columns provides such smooth projections. The

procedure is following: the absolute maximum value of each

column 1≤i≤N of W is taken as maximum potential value

VM , corresponding to the electrode eM on which the dipolar

source Di is maximally projected. The distance x from each

electrode ej to eM is known, and using equation (4) the

relative potential with respect to our smoothness constraint

can be computed, resulting in a target mixing matrix LW . We

will then look for the transform B that maps each column i

of W as V (x) (i.e., as a column of LW ). In matrix form:

LW = WB (6)

Consequently, the choice of the initial matrix W is sen-

sitive as it will affect the construction of the associated

objective matrix LW .

B. Smoothness constraint application

Using equation (1) and the objective mixing matrix LW ,

the estimation of the source activities is straightforward. By

imposing our target mixing matrix LW , we will transform

the initial sources Z into dipolar sources Sd having each

projection smooth on the scalp map. More precisely, X from

(5) can be written using transform B (6) as:

X = WBB
−1

Z (7)

The operator B emphasizes the effect of the smoothing

operator on the sources Z:

Sd = B
−1

Z (8)

Compactly, X is then written as the smooth projection LW

of these estimated dipolar sources Sd:

X = LW Sd (9)

In the present work, we do not assume any priors on

the sources to be retrieved. The method is then initialized

using the identity matrix W = I, corresponding to our

assumption that a source per sensor is to be estimated. Then

the initial sources Z are taken as original measurements X.

After applying the smoothness constraint LI , we obtain the

following estimation of the sources:

SI = L
−1

I X (10)

Before presenting the results, we first discuss how our

method relates to the Hjorth’s laplacian montage [11] when

using the identity as initialization matrix.

C. Analogy with the Hjorth’s laplacian montage

The classical Hjorth’s laplacian montage described in [11]

consists in subtracting from each electrode potential the

mean of its neighbouring electrode potentials. The founding

assumption underlying this study is similar than those made

in the present paper: each EEG sensor measurement is

mostly impacted by the local neuronal activities on the

cortex. Thus the motivation underlying this simple operation

is to identify the corresponding activity underlying each

sensor. The method decreases the correlation between the

reconstructed measurements because of the elimination of

common propagated signals.

By imposing a plausible source projections pattern on the

scalp surface, our method acts very similarly to the Hjorth’s

laplacian montage. A close look at the inverse of the matrix

LI reveals that indeed from each channel Xi is subtracted a

weighted mean of the neighbouring electrodes. The further

an electrode is from the considered electrode ei, the lower its

weight in the mean to be subtracted. The proposed method

can then be seen as a generalization of the Hjorth’s laplacian

montage: unlike for the classical laplacian, the weights are

not fixed in our method. These weights depend on the source

depth, which can be given by anatomical priors, e.g. if

accurate medical imaging modalities are available.

IV. RESULTS

In order to validate the proposed source estimation ap-

proach we simulate correlated random sources (generalized

Gaussian distribution), as well as plausible sources produced

by a neural population model [7]. These simulated brain

sources S are mixed (projected on the electrodes) using

a 3 layers lead-field matrix A (Rush & Driscoll model

[12]) generated for the given configuration of electrodes and

dipoles (one dipole beneath each electrode). We assumed a

64 channels EEG. An example of sources, their individual

scalp projections (i.e., the columns of A) and the resulting

scalp map of the mixture X is given on the left side of

the figure 4. The right side of the same figure displays the

estimated sources and their projections using our method.

Table I presents mean correlation coefficients between the

original sources S and the estimated ones Ŝ (to avoid edge

effects, the sources corresponding to the border electrodes

were excluded from the comparison). For this particular

simulation setup, corresponding both to the hypothesis of the
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Fig. 4. Example of original sources, their obtained mixture and the estimated scalp projections and sources for a dipole depth of 12 mm (informed).

Hjorth’s laplacian montage and to its generalization proposed

in this paper, both methods show similar performances when

the dipoles are placed on the cortex surface. The advantage

of our generalized method becomes compelling for more

profound or superficial sources (see table I), provided that

the depths of the sources are correctly informed.

TABLE I

MEAN CORRELATION COEFFICIENTS (1000 REALIZATIONS). THE DEPTH

OF THE DIPOLES IS GIVEN WITH RESPECT TO THE STANDARD RADIUS OF

THE INNER SPHERE IN THE RUSH & DRISCOLL MODEL (80 MM)

Dipole depth Generalized laplacian Hjorth’s laplacian

-5 mm 0.93 0.87

0 mm 0.85 0.85

5 mm 0.80 0.76

10 mm 0.77 0.63

20 mm 0.69 0.35

V. CONCLUSIONS AND FUTURE RESEARCH

Our method shows consistent performance on simulated

data corresponding to the working hypothesis. The results

are superior to those obtained using the Hjorth’s laplacian

montage for superficial and profound cortical sources. The

proposed method generalizes the laplacian montage because

the decreasing of the scalp potential can be parametrized if

the depth distance between the cortical surface and the scalp

is known. Moreover, it may generalize further the laplacian

montage as it provides the possibility to estimate the weights

associated to each channel through the estimation of each

source depth. This estimation can be either obtained from the

data or by imaging modalities. It has to be emphasized that

the method proposed in this paper stands as an introduction

to physiologically plausible semi-blind source separation

methods.

Possible short term developments will aim at studying

the effect of other initializations, and in particular using

a sphering procedure, as this pre-whitening step is known

for its capacity to provide good estimation of cortical and

radially oriented dipolar components [6]. Also, the influence

of additive noise or perturbations (EMG, ECG) on the

measurements will be evaluated.

Next, the priors on the source positions have to be relaxed

(each dipole could be assumed to be localized anywhere

on the cortical surface, not strictly beneath the electrodes).

Furthermore, the simple smoothness constraint proposed in

this work has also to be improved for a more plausible

and accurate dipolar scalpmap. From an applicative point

of view, we expect that such methods will provide accurate

quantification of the correlations between the reconstructed

cortical dipolar sources, with the objective to identify brain

functional networks.
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