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Abstract— In this work, a new approach for joint blind 

source separation (BSS) of datasets at multiple time lags using 

canonical correlation analysis (CCA) is developed for removing 

muscular artifacts from electroencephalogram (EEG) 

recordings. The proposed approach jointly extracts sources 

from each dataset in a decreasing order of between-set source 

correlations. Muscular artifact sources that typically have 

lowest between-set correlations can then be removed. It is 

shown theoretically that the proposed use of CCA on multiple 

datasets at multiple time lags achieves better BSS under a more 

relaxed condition and hence offers better performance in 

removing muscular artifacts than the conventional CCA. This 

is further demonstrated by experiments on real EEG data. 

I. INTRODUCTION 

Scalp EEG does not only record cerebral activity but is 
also contaminated by non-cerebral electrical sources like line 
noise, cardiac signals, eye blinks and movements, and muscle 
activities. Line noise and other extraphysiological artifacts 
can be greatly attenuated by proper calibration, right 
instrumentation or notch filters. Likewise, cardiac artifacts 
can be removed, almost completely, by adaptive filters using 
a reference ECG channel or by a surface Laplacian spatial 
filter. Also, eye blinks and movements can be effectively 
handled by adaptive filters with extra sensors HEOG and 
VEOG placed near the eyes, or by a combination of a blind 
source separation (BSS) method and a machine learning 
technique (see e.g. [1]). Thus, in most practical settings, only 
muscular artifacts, i.e. electromyographic (EMG) artifacts, 
pose a real challenge for the inferential interpretation of the 
electroencephalogram (EEG). 

Low-pass filters are commonly used to remove muscular 
artifacts. However, since the frequency spectrum of muscular 
artifact overlaps significantly with that of cerebral signals, 
low-pass filters not only suppress muscular artifacts but also 
cerebral signals. Linear regression methods and adaptive 
filters are relatively effective in suppressing muscular 
artifacts, but they usually require dedicated reference EMG 
channels (which are usually not desirable or not possible due 
to application constraints). More recently explored 
approaches are the so-called transform methods or spatial 
filtering methods, such as independent component analysis 
(ICA), second order blind identification (SOBI) and 
canonical correlation analysis (CCA). Although they were 
not originally designed for EEG artifact removal, they appear 
very promising for the purpose of EEG artifact removal. 
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ICA [2-4] has been extensively studied for artifact 
removal in EEG [5] [1, 6-12]. This is mainly motivated by 
the fact that ICA is effective in decomposing raw EEG 
recordings into spatially-fixed but temporally-dynamic 
components. Artifact-free EEG data can then be 
reconstructed by subtracting components due to artifacts 
from the raw EEG data. Two points are worth mentioning. 
First, ICA exploits only the spatial diversity of the source 
signals and it uses only the marginal distribution of the 
observations in searching for spatially-fixed and temporally-
dynamic independent sources. Therefore, they are applicable 
even when source signals are temporally independent. 
However, EEG artifact typically has unique temporal 
correlation which can be exploited for better source 
separation. Second, ICA has shown consistent success in 
removing ocular artifacts and some success in removing 
continuous EMG artifact in the context of epileptic seizures. 
However, the separation between EEG and EMG sources was 
in many cases not optimal, see e.g. [13]. Recent attempts to 
study the sensitivity and specificity of ICA as an EMG 
removal tool also concluded that ICA was not able to provide 
perfect EMG artifact removal, although it did outperform 
conventional regression-based correction techniques [14, 15]. 

SOBI [16] or equivalently TDSEP by [17] seeks a 
transformation that simultaneously diagonalizes several 
correlation matrices at different lags. Since, in general, no 
transformation may exist to accommodate such a stringent 
condition, a function that objectively measures the degree of 
joint (approximate) diagonalization (JD) at different lags is 
employed instead. It has been reported that SOBI showed 
significant improvement over ICA. However, traditional 
SOBI methods consider stationary sources and it may suffer 
when non-stationary sources are present, such as transient 
EMG episode [18]. 

Besides ICA and SOBI, it has already been shown that it 
is also feasible to apply CCA as a BSS tool for separating 
EMG artifacts from EEG [13]. In such an approach, CCA 
solves the BSS problem by forcing the sources to be 
maximally autocorrelated and mutually uncorrelated. Due to 
the broad frequency spectrum of EMG artifacts, they 
resemble temporal white noise, thus having lower 
autocorrelations compared to cerebral EEG signals [19]. In 
this paper, a new CCA-based method for removing muscular 
artifact in EEG is proposed. Similar to SOBI, multiple time 
lags are introduced into CCA and BSS is achieved by 
maximizing the sum of canonical correlations over multiple 
datasets at different time lags. It will be shown theoretically 
that the proposed use of CCA on multiple datasets at multiple 
time lags achieves better BSS under a more relaxed condition 
and hence offers better performance in removing muscular 
artifacts than the conventional CCA. 

Multiple Time-Lag Canonical Correlation Analysis for Removing 

Muscular Artifacts in EEG 

Kaiquan Shen, Ke Yu, Aishwarya Bandla, Yu Sun, Nitish Thakor, Xiaoping Li 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 6792



  

II. CONVENTIONAL CCA 

CCA is a transfer method involving linear transformation 

of two sets of random vectors (denoted by 1

1

d�x \ and 

2

2

d�x \ ) onto a joint subspace [20]. This concept was 

further extended to solve the BSS problem by considering the 
source signal and a temporally delayed version of the source 
signal as the two vectors [21]. This multivariate statistical 
method exploits the fact that muscle artifacts have low 
autocorrelation compared to the EEG signals. The aim would 

be to determine two sets of basis vectors 1

1

dZ �\ and

2

2

dZ �\ , for x1 and x2, respectively so as to maximize the 

canonical correlation coefficient U  between the linear 

combination 
1 11

TZ z x  and
2 2 2

TZ z x , as shown in (1). The 

thus determined weight vectors, &1 and &2 are used to 

calculate the first pair of canonical variates 
1 11

TZ z x  and

2 2 2

TZ z x . Similarly, consequent pairs of transformation 

vectors are found such that they are maximally correlated and 
also, uncorrelated to the previously determined set of 
variates. This process is repeated to find all such vectors, 
with the total number restricted to minimum dimension of x1 
and x2. 
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where 
1 1x x

C  and 
2 2x x

C  are the autocovariance matrices and 

1 2x x
C is the cross covariance matrix of x1 and x2. Normalizing 

the vectors &1 and &2 by letting 
1 11 1 1T

x x
CZ Z   and

2 22 2 1T

x x
CZ Z  , 

we observe that it has been reduced to a generalized 
eigenvalue decomposition problem: 
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Thus BSS-CCA finds sources which are uncorrelated 
with each other, maximally autocorrelated and ordered by 
decreasing autocorrelation index. The above described 
method of CCA is constrained by a few assumptions. It 
extends only to data sets which have a linear relationship. 
Furthermore it is worthy to note it has been demonstrated that 
under more relaxed separability conditions, improved source 
separation can be achieved with increasing number of data 
sets. 

III. MULTIPLE DATASET CCA 

A. Algorithm  

Multiple dataset CCA (MCCA) can be viewed as a 
generalized extension of the conventional canonical 
correlation analysis. MCCA involves mapping a linear 
relationship between several sets of variables to achieve 

maximum overall correlation. Given M  datasets md

m
�x \ , 

m=1…M, the aim of this method would be to determine a set 

of M vectors 
m

Z  and compute pairwise correlation 

coefficients for each pair of the variable T

m m m
Z z x , such 

that the sum of all the pairwise correlation is highest. 

The MCCA algorithm cannot be solved as a simple 
eigenvalue decomposition problem as in the case of CCA, 
due to high computational costs. It works in multiple stages, 
with a linear combination being found for each random 
vector in each stage such that correlation among the group of 
resulting variates, i.e. the canonical variates, is maximized. 

The optimization of overall correlation among the 
canonical variates can be realized by the following objective 
functions [22]: SUMCORR, SSQCOR, MAXVAR, 
MINVAR, and GENVAR. Of these, MAXVAR and 
MINVAR result in direct solutions while the other three 
follow an iterative process implying that the initial condition 
has an impact on the final solution. 

B.  Source Separability Conditions for conventional CCA 

The source separability condition can be investigated by 
assuming the following generative model [23]: 

1) Consider a group of M datasets { md

m
�x \ }|m=1 … M, 

containing linear mixture of K sources K

m
�s \

 
where .�0, 

mixed by a nonsingular mixing matrix 
m

A , i.e.,  m m mx A s . 

2) Assume that sources m
s  are uncorrelated within each 

dataset and have zero mean and unit variance, i.e.,

}{ ,E = 0,m = 1, M� � �ms  and { } , 1,2,
m m

E I m M  T
s s " where 

I is the identity matrix. 
3) Assume that sources from any pair of datasets 

, {1, 2, , };m n M� " m nz have nonzero correlation only on 

their corresponding indices. Without loss of generality, it is 
further assumed that corresponding sources have correlation 
in non-decreasing order in magnitude, i.e., 

(1) (2) ( )

, , ,, , ,K

m n m n m n
r r rt t" where ( ) ( ) ( )

, { },k k k

m n m n
r E s s  and ( )k  

represents the kth element of random vector .
m

s   

Let’s consider the case of two datasets, i.e. M=2. As 
explained earlier, the demixing vectors &1 and &2 are 

obtained by maximizing the correlation coefficient ! between 

the two sources 
1 11

TZ z x  and
2 2 2

TZ z x . The first pair of 

canonical variates z1=&1
T
x1 and z2=&2

T
x2 are then jointly 

extracted by &1 and &2. The source separability condition is 
given by:    
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To see this, let’s express )

1

(1
x  and )

2

(1
x in terms of linear 

mixtures of sources 1s  and 2s , respectively, i.e., 
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 ¦x sb , where a  and 

b  are vectors of mixing coefficients (they are corresponding 

to the first row of 1A and 2A , respectively). Assuming that  

)

1
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x  and )

2

(1
x  have unit variance, the correlation between 

them can be rewritten as ( ) ( ) ( )
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Due to the triangle inequality rule, we have 
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The RHS of the above can be rewritten as an inner 

product of two vectors ( 1 and ( 2, where 

(1=11 a<
1
l I ~11i'.i l,I a<

2
l I ~11i'.~) 1,-··,I a<KJ I ~11i'.;) f, (5) 

and 

(2=11 b<
1
l I ~11i'.i l,I b<

2
l I ~11i'.~) 1,-··,I b<KJ I ~11i'.;) f (6) 

Note that vectors x
1 

and x2 have unit variance in the 

generative model. As a result, we then have 
K 

~) a<kl 12=1, (7) 
k~I 

and 

(8) 
k~I 

Therefore, vectors ( 1 and (
2 

are confined on a K­

dimensional hyper-ellipsoid with semi-axes 

{~I li'.i l,~I li'.~) 1,-··,~I li'.;) 1}. (9) 

According to the generative model and the condition 

specified in (3), we have 

I 'i,2 (I) l>l 'i,2 (k) 1, 'v'k > 1. (10) 

Hence, 

(11) 

where the equality holds and the inner product is maximized 

ifthe angle between ( 1 and (
2 

is zero, i.e., ( 1 and (
2 

are 

parallel and pomtmg to the same direction, and 

II ( 1 11=11 ( 2 II= wi. In other words, I Fi,
2

1 achieves its 

maximum when 

a<kl = b(k) ={l, ifk=l 
I I I I o, if k ;t I° 

Correspondingly, we have 

Ii;?) l=I si1
) I, 

I (i1
) l=I s~1 ) I . 

(12) 

(13) 

(14) 

Therefore, if two demixing vectors OJ1 and OJ2 can be 

found to maximize the correlation between the extracted 

sources from each dataset, the extracted sources are certainly 

the first pair of corresponding "true" sources, up to a phase 

ambiguity. 

Now, suppose that the first pair of sources are extracted 

and removed from x
1 

and x2 . Similarly proceeding, the kth 

pair of sources can be jointly recovered from x
1 

and x2 if 

I 'l,2 (k) l;tl 'l,2 (k+I) 1. (15) 

In summary, the separability condition for CCA to 

recover all the K pairs of sources is as follows: 

C. MCCA Achieves Better BSS Under More Relaxed 

Conditions 

(16) 

We know that MCCA operates in multiple stages, 

extracting at each stage, sources from dataset pairs while 

maximizing their correlation. This multistage deflationary 

process aims at unifying the pairwise correlations into an 

overall correlation measure, which achieves a maximum 

only when each of the pairwise correlations is maximized. 

Bearing this in mind, the source separability condition of 

joint BSS for two datasets can be extended to M datasets: 

'v'm,nE{l,2, ... ,M}, lr~~~l;tlr~'.~I, l'S,k<l-S,K (17) 

However, the above condition can be further relaxed 

without compromising its BSS capability. To corroborate 

this, consider that the first source in all M datasets has to be 

extracted. Following the separability condition to the mth and 

nth datasets, we have that the first source m these two 

datasets are jointly extracted if 

I rm,n (I) l;tl rm,n (2) I. (18) 

Therefore, to guarantee that the first source in all M datasets 

are extracted, we just need to find, for each m = 1, 2, · · ·, M, 

an index n E {1,2,-··,M} such that (18) is satisfied. In other 

words, 

'v'm E {1,- · ·, M}, :Jn ;t m such that I r< 1
l l;tl r< 2

l 1- (19) 
m,n m,n 

Extending this condition to K sources, we have the 

separability condition for multiple dataset CCA: 

'v' m E {1,- · ·, M}, :Jn ;t m such that I r (kl l*I r ui I, subject 
m,n m,n 

to 1 -s, k < l -s, K. Details of the proof can be found in the work 

by Li et al. [23]. 

This is a much more relaxed condition compared to (17). 

In other words, joint BSS on a larger group of datasets is 

easier to be achieved than on a smaller group of datasets. 

This provides the theoretical basis for the proposed idea of 

using multiple datasets CCA to remove muscle artifacts. 

D. Multiple Time-Lag Canonical Correlation Analysis for 

Removing Muscular Artifacts in EEG 

Motivated by the theoretical advantage of multiple dataset 

CCA over conventional two dataset CCA, we propose to use 

multiple time-lag CCA for removing muscular artifacts in 

EEG. For a given EEG epoch, multiple datasets are generated 

by introducing different time lags to the original EEG epoch. 

The procedure is shown in Fig.1. 

Fig.1. Implementation steps for Multiple Time-Lag CCA. 

E. Experiments 

The proposed method was tested on a large EEG 

database. The data were self-collected with control of several 

of muscle artifacts (caused by various facial expressions, jaw 

clenching, eyebrow raising, etc.). 

To demonstrate the effectiveness of the proposed method, 

Fig. 2a shows a 10s epoch of a scalp EEG recording with 

sampling frequency of 250 Hz. The muscle artifact was 

caused by transient facial muscle movement. The 

corresponding reconstructed artifact-free EEG epoch is 

shown in Fig. 2b. 

Fig. 3a shows the sources that the proposed multiple time 

lag canonical correlation analysis decomposed. It is clear 

that muscle artifacts are relatively well contained in the last 

few components, while cerebral EEG components and eye 

blinking components appeared in the first few components. 
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The advantage of introducing multiple time lags in canonical 
correlation analysis can be seen in Figs. 3b, 3c, and 3d, where 
different numbers of time lags were used in the proposed 
method.  It can be seen that joint BSS on a larger group of 
datasets (for a larger number of time lags used) is easier to be 
achieved than on a smaller group of datasets (for a smaller 
number of time lags used). 

IV. DISCUSSION AND CONCLUSION 

A new method to remove muscular artifacts from EEG is 
proposed. The method is based on joint blind source 
separation scheme by using Multiple Dataset Canonical 
Correlation Analysis. Theoretical study shows that the 
proposed joint blind source separation method can achieve 
source recovery under a more relaxed separability condition. 
In other words, the proposed method is easier to achieve 
blind source separation than conventional method on a 
smaller group of datasets. The experiment shows promising 
results.  
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(a)                (b) 

Fig.2. (a) Sample EEG epoch with muscular artifacts, (b) reconstructed 
artifact-free EEG epoch after muscular artifact removal using the multiple 
time lag CCA. 

 
(a) 

 
    (b)       (c)         (d) 

Fig.3. (a) Blind Source Separation results by the proposed method (Number 
of time lags = 10). Cerebral EEG components appear in the first several 
components, while EMG artifacts appear in the last several components. 
The autocorrelation of the separated sources for different number of time 
lags used: (b) time lag =1, (c) time lag = 5, (d) time lag =10. It appears that 
it provides better separation of muscular artifacts from cerebral EEG 
components with increasing number of time lags. 
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