
 

Abstract - This work proposes a wavelet decomposition based 

scheme to estimate the evolution trend of physiological time 

series. The scheme does not involve the explicit development of 

a model and is essentially supported on the hypothesis that 

future evolution of a biosignal can be estimated from similar 

historic patterns. The strategy considers an a-trous wavelet 

decomposition, where the most representative trends are 

extracted from the historic similar patterns. Then, a set of 

distance-based measures able to assess the prediction likelihood 

of each representative trend, is introduced. From these 

measures and through an optimization process, a subset of 

these trends is selected and aggregated to derive the required 

time series evolution trend. 

The effectiveness of the methodology is validated in the 

prediction of blood pressure signals collected in two 

telemonitoring studies: TEN-HMS and MyHeart. Additionally, 

Friedman and Nemenyi statistics tests are implemented to rank 

several methods, confirming the value of the proposed strategy. 

 
I. INTRODUCTION 

t is known that health is linked to behavior and lifestyle. 
Therefore, it is recognized by clinical professionals that 

the focus should be on prevention, as the best method to 
avoid diseases from happening. In this context, phealth and 
telemonitoring solutions are making a huge impact on 
preventive medicine. The patient is at the center of the health 
delivery process and, through remote monitoring and 
management applications, pHealth systems aim the 
continuity of care at all levels of health care delivery. By 
enabling remote patient monitoring, together with adequate 
diagnosis and prediction methodologies, they are of extreme 
significance for the conception of early prevention systems, 
providing professionals with adequate tools to diagnose and 
predict the occurrence of severe events. 
The main topic of the present work is the research of 
methodologies for time series prediction, mainly to support 
the early detection of critical events. It is founded on the 
hypothesis that the estimation of biosignals future evolution 
can be supported on current and past measurements taken 
from historical data of a group of patients, including the 
patient under study. To this aim two main stages are 
considered: i) in the first, the selection of patients who 
display similar behaviors in their physiological time series is 
carried out by means of a similarity analysis process; ii) then, 
in the second stage, an estimation RI� WKH� ELRVLJQDO¶V� IXWXUH�
values is performed, based on the similar time series 
identified in the first phase. 
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Significant advances have been made in the development of 
methods for the determination of similarities in time series. 
The simplest algorithms used the Euclidean distance 
between raw time series of the same length. Others proposed 
dynamic time warping for time series of different lengths [1]. 
Nevertheless, due to the high dimensionality of time series, 
most of the approaches perform dimension reduction on data. 
Among them, some used discrete Fourier transform [2], 
principal component analysis (Karhunen-Loève transform), 
[3], and wavelet transform [4]. Rocha et al [5] presented an 
innovative measure able to efficiently evaluate the similarity 
between two physiological time series. It combines the Haar 
wavelet decomposition, in which signals are represented as a 
combination of a set of orthogonal basis, with the 
Karhunen-Loève transform, allowing for an optimal 
reduction of that set of basis. Using an iterative algorithm for 
computing the corresponding coefficients, the computational 
complexity of the method was significantly decreased.  

Among prediction techniques, linear regression methods, 
such as autoregressive structures, have been the most used in 
practice. However, linear models are usually inadequate for 
biosignals, since, in practice, these are non-linear to some 
extent. Among the non-linear methods, neural networks 
became very popular mainly due to their universal 
approximation properties. Many different types of neural 
networks, such as time delay and recurrent neural networks, 
have been proven to be effective for time series modeling 
and prediction [6]. On the other hand, in most clinical cases, 
an assumption of global stationarity can not be considered. 
Among time-frequency methods, wavelet transform, which 
can produce a good local representation of the signal in both 
the time and frequency domains, offering an appropriate 
framework to deal with the non-stationarities, has been 
applied. Although the wavelet transform itself is not a 
forecasting methodology, it may be incorporated in hybrid 
prediction schemes involving the multi-resolution 
decomposition of signals [7]. 

This work, being the follow-up of the one proposed by the 
same authors [5] in the context of similarity analysis, 
presents a strategy based on wavelet decomposition for the 
prediction of biosignals. In this procedure no explicit model 
is involved, and the goal of the methodology is not to 
perform an accurate prediction, but to obtain a reasonable 
forecast of the future trend. Basically, from the wavelet 
decomposition of similar signals, the most appropriate trends 
at each decomposition level are identified and combined 
through an optimization process, directly providing an 
estimation of the current time series evolution.  

The structure of the paper is as follows: section 2 describes 
the proposed wavelet multi-resolution scheme and section 3 
presents its application to blood pressure signals using data 
collected during TEN-HMS and MyHeart telemonitoring 
studies. Finally, in section 4, some conclusions are drawn. 
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II. METHODOLOGIES 

The Figure 1 illustrates the concept behind the proposed 

prediction approach. 
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Figure 1 - Prediction strategy based on similar signals. 

Basically, the process starts by considering the current signal 

to be predicted, desiguated here as the template X(t) E ffi.1'N. 
Using the template and from a similarity analysis procedure, 

the set of the M most similar conditions (patterns) 

X(t)={Xm(t)E JR:.1·N}, m=l, ... ,M, is identified [5]. From 

these, the corresponding subsequent P future values, 

Y(t) = { Ym (t) E JR1·P}, are straightforwardly obtained 

(known past values from historic dataset). Then, the known 

"future" evolution of the identified patterns, Y(t) = { Ym (t)} , 

can be used in a prediction mechanism to estimate the 

evolution of the current template, Y(t) . The global set of 

Z() TTll M N+P . 
patterns, t E m. ' , 1s therefore composed of two 

components X(t) and Y(t), in the form of(l). 

Z(t) = [ X(t) Y(t) ] (1) 

The Figure 2 depicts the main steps involved in the 

estimation of Y(t), based on the similar patterns Z(t) and 

trough a wavelet decomposition scheme. 
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Figure 2 - Prediction methodology. 

Step 1. Template decomposition 

In the first step the template X(t) is decomposed using the 

Haar a-trous wavelet transform [8], a shift-invariance 

transform. As result, assuming for instance three levels of 

decomposition, the template can be obtained at the time 

instant t0 as the sum of details i X(t), for scales 1 to 3, plus 

the trend a3 
X(t), as given by (2). 

x(t0 ) = d 1
x(t0 )+d

2
x(t0 )+d

3
x(t0 )+a

3
x(t0 ) (2) 

For a general case, considering L levels of decomposition, 
the wavelet decomposition is described by W { X} E ffi.L+l,N, 
according to (3). 

w {x} ={di X(t),aL X(t) }, l = 1, .. ,L (3) 

Step 2. Representative trends 

The second step involves the determination, at each 
decomposition level, of the most representative time series 

(trends) from the retrieved similar historic signals. To 

achieve this goal, the historic siguals are in a first phase 

decomposed using the a-trous wavelet, according to (4). 

W{Zm} ={dizm(t),aLzm(t)}, l = 1, .. ,L (4) 

The variables alzm(t) and d
1
Zm(t), m=l, ... ,M, represent, 

respectively, the approximation and the details. It is 

important to note that, in this case, the decomposition can be 

extended to the "future" (time instants from N + 1 to 

N + P ), with length N + P, that is, W {Zm} E ffi.L+l,N+P. 
Then, in a second phase, the representative decomposition 

trend at each level is determined through a clustering process. 

In this case the subtractive method was employed [9]. 

d
1
Z(t)=subCustering {d

1
Zm(t)}, m=l, .. ,M, l=l, ... ,L (5) 

al Z(t) = subClustering {al zm Ct)}' m = l, .. ,M (6) 

The variables diZ(t) E ffi. l,N+P and aL Z(t) E ffi. l,N+P denote, 

respectively, the representative details and approximation. 

Step 3. Optimal trends 

In this step, the representative trends are reduced to an 

optimal set, that is, to a set of trends (decomposition levels) 

that have the potential to contribute to a consistent prediction. 

To this purpose, a combination process comprising the 

minimization of a set of distance-based measures, that assess 
the likelihood that a representative trend will contribute to a 

correct estimation, is implemented. 

i. Distance-based measures 

The distance-based measures are computed for each 

decomposition level l = 1, .. , L + 1, where L + 1 stands for the 

approximation, using: i) the template X(t) E rn:.1·N ; ii) the 

corresponding wavelet decomposition at l level, 

di X(t) E ffi.1'N ; iii) the wavelet decomposition of similar 

patterns at the same level, d 1 Zm (t) E rn:_l,N+P, m = l, .. ,M; iv) 

the corresponding clustering, that is, the representative 

trends d 1Z(t) E rn:.1·N+P . Using these signals, a set of 

distance-based measures B/ is computed as follows, for 

m=l, .. ,M: 

a: = S(X(t), d 1 
X(t)), t =1, .. . ,N (7) 

B~ = S(d1 X(t),d1Z(t)), t=l, ... ,N (8) 

Bi =mean[S(d
1
X(t),d

1
Zm(t))], t=l, ... ,N (9) 

B~=exp[-std{S(d1X(t),d1Zm(t))}], t=l, ... ,N (10) 

e; =mean[S(d
1
Z(t),d

1
Zm(t))J. t=N+l...,N+P (11) 

e; =exp[-std {S(d
1
Z(t),d

1
Zm(t)) }], t=N+l, ... ,N+P (12) 

As result, a vector composed of six measures is obtained, 

e 1 =[ e;,e~, ... ,en ,where each ej E[O,l]. 
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The measure S(X1(t),X2 (t))E[0,l], is a normalized 
similarity measure, where a value of 1 of means a total 

agreement between the signals. The operators meanO and 

std(·) denote, respectively, the mean and standard-deviation 

operators. 

ii. Selection of the optimal trends 

The optimization strategy assumes that each of the 

parameters B! defines a measure, that enables to assess the 
quality of each representative trend. Therefore, according to 

the obtained measures, a decision regarding the inclusion or 

exclusion of a specific representative trend in the optimal set 

can be taken. To support this decision the operators 

maximum(-) and productO are employed, respectively, as 

the aggregation and conjunction operators. As result, the 
quality of a specific prediction is assessed according to ( 13 ). 

p(8) =max {p(80'1), ... ,p(8o'J, ... ,p(80'n)} (13) 

Each variable p(80';) denotes the possible decomposition 

level combinations, resulting from the operator C(nL,nN) 

(combinations of nL taken nN at a time). In this process, 

the conjunction of the metrics corresponding to a specific 
level is given by the product(-) operation (14). 

6 

p(Ei)= IJe: l=l, ... ,L+l (14) 
i=I 

If two levels L; and Li are combined, the corresponding 

aggregation p(80';) is obtained according to (15). 

p(80';) =max {p(8L, ),p(8L1
)} (15) 

Step 4. Trend prediction 

Finally, the optimal trends resulting from the optimization 

process are combined to obtain the trend prediction 

corresponding to the template X(t), as (16). 

Y(t)=aa-Z(t)+ Lda-Z(t) t=N+l, .. ,N+P (16) 

where the subscript (J denotes the optimal trends identified 

by the optimization process. 

III. RESULTS 

The present section focuses on the analysis of blood pressure 

(BP) signals daily collected by two telemonitoring platforms: 

TEN-HMS [10] and MyHeart [11]. The main goal is to 
assess the effectiveness of the presented predictive strategy 

to estimate the evolution trend of such signals. 

A. Prediction methods 

The performance of the proposed wavelet multi-resolution 
scheme (WMM) is also compared with other typical 
prediction strategies, namely the autoregressive integral 
moving average model (ARIMA), and two non-linear 
regression models, the generalized regression neural network 
(GRNN) and the support vector regression (SVR). 
ARIMA: Regarding the ARIMA model, experiments using 

BP signals with degree of differencing d = 1, 2 and 

regressive and moving average orders na = 1,2,3 and 

nc = 1,2,3, resulted in ARIMA(na,d,nJ = ARJMA(2,l,2). 
The respective parameters were estimated using a least mean 

square method, by means of the armaxO Matlab command
2

. 

2 Matlab 7.10.0.499 (R2010a), The Math Works Inc. 

GRNN: The newgrnnO Matlab command was used to 
implement the neural model, where the width of the kernels 

was experimentally determined as A,= 0.2. 

SVR: The implementation of the SVR method was done 

through the libsvm framework 3 . The training data was 

previously normalized to the range [ -1, 1] and the parameters 

were: i) type of SVR: epsilon-SVR; ii) kernel type: radial 

basis function; iii) width of kernel function, r = 0.5 ; iv) cost, 
C = 1; v) tolerance of termination criterion, & = 0.001. 

AVP: Average of the patterns - the fourth method simply 

considers the average value of historic signals Ym (t), as the 

estimation of Y(t). 

WMM: Finally, the last method implements the wavelet 

multi-resolution strategy proposed in section 2. 

B. Comparison of the prediction methods 

The accuracy of the methods can be determined using 

common prediction metrics, such as NRMSE and MAPE. 

Here, the well-known Pearson correlation (values in the 

range [-1, l]) was implemented. Additionally, the Friedman 

and Nemenyi tests were applied to compare the several 
predictors [12]. The Friedman test compares schemes' 

average ranks to decide whether to reject the null-hypothesis, 

which states that all the schemes are equivalent. If the 

Friedman test rejects the null-hypothesis, the post-hoc 

Nemenyi test can be applied to rank the prediction schemes 

and indicate whose performances have statistically 
significant differences. 

C. Experiments with the TEN-HMS and MyHeart datasets 

1. Data pre-processing 

Firstly, a pre-processing procedure is applied to the original 

BP signals. The result is a historic dataset with a value per 

day (sampling rate of 1 day). This process also involves: i) 

averaging of values (in case two measurements have been 

performed in the same day), ii) dealing with missing values 

and, iii) noise reduction. 
A forecast period of approximately one week (eight days, 

P=S) was stipulated. In terms of the length of the template, 

that is, the past information used in the prediction, the value 

suggested by the physicians was about a month (N=32). 

Moreover, the values of N and P are powers of two, to 

simplify the wavelet transform operations. 
The number of retrieved patterns from the historic dataset 

was M=5 and the level of wavelet decomposition was L=5. 

Only the patients for whom there were BP measurements in, 

at least, 90 days (3 months) were selected, resulting in a total 

of 51 and 100 patients, respectively for TEN-HMS and 

MyHeart datasets. 

2. Comparison of prediction results 

To compare the proposed prediction method against the 

other strategies, a set of 300 and 500 templates of length 

N=32 were randomly selected, respectively, from TEN-HMS 

and MyHeart datasets. The Figure 3 depicts the box-plots 

corresponding to the Pearson correlation computed between 
the actual and the predicted values by ARIMA, GRNN, SVR, 

AVPandWMM. 

3 www.csie.ntu.edu.tw/-cjlin/libsvm/ 
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From the analysis of Figure 3 and, in global terms, it appears 
that the proposed method is superior to the others, both with 
TEN-HMS and MyHeart datasets. In effect, the wavelet 
based prediction method (WMM) presents the highest 
median, however, a higher variability than some of the other 
prediction methods. Three of the methods (ARIMA, GRNN, 
and SVR) compute the prediction based on an iterative 
approach: a one-step ahead model is iteratively applied 
during P times, being the current predictions used by the 
model in order to obtain the next forecast. The last two 
methods (AVP and WMM) do not involve the explicit 
computation of a model. Thus, they are, to some extent, 
similar to a direct approach. This fact can justify why GRNN 
and ARIMA present poor results, in particular for the TEN-
HMS dataset.  
In order to accurately compare the predictive methods, the 
Friedman test was implemented. The Table 1 shows the 
average values obtained in the ranking of the methods (each 
method was ranked in the range {1,..,5}, according to its 
capacity to predict the template future evolution) 

 Table 1- Comparison of the prediction methods.  

 ARIMA GRNN SVR AVP WMM 

TEN-HMS 2.50 2.10 3.20 3.00 4.20 

MyHeart 2.15 3.35 2.1 3.60 3.80 

From the average of ranks, the value of qui-square was
2 30.32FF   and 2 21.24FF  , respectively for TEN-HMS 

and MyHeart. $V� UHVXOW�� WKH� QXOO� K\SRWKHVLV� ³Ho: all the 

methods behave similarly´� ZDV� UHMHFWHG� for both datasets 

with a high significance level (respectively with a p-

value=0.0004 and 0.0003, for TEN-HMS and MyHeart). As 

a consequence, the Nemenyi test was performed to compare 

the methods based on the computed average ranks, which 

results are presented in Table 2. 
 

Table 2 - Nemenyi test. 

  GRNN SVR AVP WMM 

ARIMA 
TEN-HMS -0.40  0.70  0.50 1.70 * * *  

MyHeart  1.20 -0.05  1.45 * *  1.65 * * *  

GRNN 
TEN-HMS   1.10  0.90 2.10 * * *  

MyHeart  -1.25 *   0.25 0.45 

SVR 
TEN-HMS   -0.20 1.00 

MyHeart    1.50 * *  1.70 * * *  

AVP 
TEN-HMS    1.20 

MyHeart    0.20 

* at a significance level of 10%, * *  at a significance level of 5%,  

* * *  at a significance level of 1% 

 

In these particular experiments, by means of the Nemenyi 
test it is possible to conclude that two methods are 
significantly different at levels of 1%, 5% and 10%, if their 
average ranks differ at least the critical value, respectively, 
1.9902, 1.6861 and 1.5317. Thus, from the Table 2, it can be 
concluded that the proposed WMM method outperforms the 
ARIMA and the GRNN predictors at the level of 1% for the 
TEN-HMS dataset. In case the of the MyHeart dataset, the 
WMM method outperforms ARIMA and SVR at the level of 
1%, and the GRNN at the level of 10%. Thus, it can be 
concluded that the proposed method is globally superior to 
the ARIMA, GRNN and SVR, but comparable with the AVP 
method. 
 

IV. CONCLUSIONS 

This work proposed a wavelet decomposition based scheme 
to efficiently estimate the evolution trend of physiological 
time series. By means of a similarity analysis procedure, a 
set of signals presenting a dynamics similar to the current 
time series, is retrieved from the historic. From the wavelet 
decomposition of these signals the most representative 
trends are extracted at each decomposition level and 
combined through and optimization process, from which  the 
evolution of the current signal is straightforwardly obtained. 
The scheme was successfully implemented using TEN-HMS 
and HeartCycle telemonitoring studies, to the trend 
estimation of blood pressure signals.  
Future work will be devoted to extend this strategy to multi-
parametric settings.  
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