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Abstract— Chronic obstructive pulmonary disease (COPD) is
responsible for significant morbidity and mortality worldwide.
Recent clinical research has indicated a strong association
between physiological homeostasis and the onset of COPD
exacerbation. Thus the analysis of these variables may yield
a means of predicting a COPD exacerbation in the near future.
However, the accuracy of existing prediction methods based
on statistical analysis of periodic snapshots of physiological
variables is still far from satisfactory, due to lack of integration
of long-term and interactive effects of the physiological vari-
ables. Therefore, developing a relatively accurate method for
predicting COPD exacerbation is an outstanding challenge. In
this paper, a regression-based machine learning technique was
developed, using trend pattern variables extracted from COPD
patients’ longitudinal physiological records, to classify subjects
into “low-risk” and “high-risk” categories, indicating their risk
of suffering a COPD exacerbation event. Experimental results
from cross validation assessment of the classifier model show
an average accuracy of 79.27% using this method.

I. INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is respon-

sible for significant morbidity and mortality worldwide [1].

The major contributor to COPD morbidity is exacerbation,

a worsening of COPD symptoms, and its association with

other co-morbidities. Both factors have increased the cost

of managing COPD [2]. Therefore, for better management

and more timely treatment of COPD patients, an earlier

identification of exacerbation risk is needed.

Recent research reveals a strong association between

changes of vital physiological parameters and the onset of

COPD exacerbation. Heart rate (HR) and peripheral arterial

oxygen saturation (SpO2) have been shown capable distin-

guishing the onset of COPD exacerbation from normal vari-

ations in symptoms. As a criterion for screening insufficient

blood oxygen saturation [3], an SpO2 value less than 88%

is considered a sign of instability in COPD patients [4]. HR

is reported to increase as COPD exacerbations worsen. A
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HR value over 110 BPM (beats per minute) or 20% above

baseline is one of the clinical guideline indicators to assess

exacerbation severity [1].

In addition, the correlation between low blood pressure

and COPD exacerbation-related in-hospital mortality has

been reported by Edwards et al. [5]. Body temperature is

also a critical sign of patient’ wellbeing. One study reported

that over one-third of exacerbations requiring hospitalisation

had fever as an indicator [6]. COPD patients often loose

weight as a result of exacerbation of their disease [7].

Most of the above work, if not all, is based on statistical

analysis of periodic snapshots of physiological parameters

weekly or monthly. Whether patterns from a continuous

physiological data stream, such as long-term data trends may

have a predictive role, is rarely studied. Therefore, a lack of

investigation into the predictive power of longitudinal phys-

iological data trends has motivated the research contained

herein, to better predict the onset of COPD exacerbation.

In this paper, a trend detection technique, previously

developed by our research group [8] was employed to

automatically apply piecewise linear fits to COPD patients’

longitudinal physiological measurement records. A number

of features were later extracted from these trend fits and used

to train a classifier model to predict the onset of exacerbation.

II. METHODS

A. Data set

The data was obtained from seven COPD patients, aged

between 63-87 years old, who lives in the western suburbs of

the city of Sydney in Australia. Data was collected by staff

at Blacktown Hospital, Sydney, from April 2009 to October

2010, using a TeleMedCare Health Monitor (TeleMedCare

Pty. Ltd., Sydney, Australia). For each subject, six physio-

logical parameters were measured daily for approximately

one year: weight, diastolic blood pressure (DBP), systolic

blood pressure (SBP), HR, SpO2 and temperature. The

measurements of each type of physiological parameter form

a time series, in which trends are later detected. In addition,

standardised health questionnaires were used to assess the

symptoms of illness and the mood of patients. Treatment

with medication was also monitored. It should be pointed

out that, in this study, the spirometry measurements were not

consistently recorded since the patients were not encouraged

to perform spirometry in an unsupervised environment by

the staff of the hospital. This results in a limitation of the

work presented here.
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Before detecting trends in the physiological parameter

time series, the raw physiological measurement data was

pre-processed to remove possible outliers. For any repeated

measurements on the same day, an average for that day was

used.

B. Trend detection

To identify trends in the physiological time series data for

each subject, over approximately one whole year, a piecewise

regression algorithm, introduced in [8], was employed. The

piecewise linear trend detection algorithm has been shown to

perform well in detecting underlying trends in data corrupted

by noise. The location of the K breakpoints in the piecewise

linear fit are selected using a backward selection search,

sequentially removing the breakpoint which gives the least

increase in the mean squared error of the fit, but forbidding

the removal of any breakpoint which would result in any

single error exceeding a predetermined limit, termed emax,

which is heuristically chosen as the fraction of the standard

deviation of the data over the entire year. Fig. 1 demonstrates

a sample of weight measurements across approximately one

year.
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Fig. 1. A sample of approximately one year of weight measurements.
The blue dots are the weight data points. The green circles are the detected
breakpoints. The red dash line is the piecewise trend detected.

C. Feature extraction

To estimate a daily health status, an “online” scheme was

used. When a new day’s physiological measurement data

arrives, the trend fit is updated using the above technique

and the trend pattern features are extracted from the trend

for the day. The measurement data is recorded in the format

of (t, y), in which t is the abscissa (date) and y is the ordinate

(measurement value). Accordingly, nine basic features were

generated for each day:

1 Measurement value: the value of the physiological mea-

surement on the target day (ytarget), that is the most

recent day; if missing, an interpolated value is used

instead.

2 Time to last breakpoint: the time difference between the

target day (ttarget) and last breakpoint day (tlastBP ).

tdiff = ttarget − tlastBP (1)

3 Slope of trend segment where the target day is located.

slope =
ytarget − ylastBP

ttarget − tlastBP

(2)

4 Absolute change over segment.

|ydiff | = |ytarget − ylastBP | (3)

5 Standard deviation of measurements (yi) over the time

interval since the last breakpoint. µ is the mean value

of yi.
σsegment =

√

E{(yi − µ)2} (4)

6 Standard deviation of segment after detrending: standard

deviation of the difference between the values of real

measurement (yi) and the values of trend estimate (ŷi):

σdetrend =
√

E{(yi − ŷi)2} (5)

7 σS : a statistical parameter returned by the trend de-

tection technique, which is estimated by finding the

standard deviation of the data within a short-term time

window.

8 σL: another statistical parameter returned by the trend

detection technique, which is calculated as the standard

deviation of the entire signal.

9 σS/σL: the ratio of σS and σL. An indicator of signal-

to-noise ratio.

Thus 54 features were extracted (9 basic features ×
6 physiological parameters). Furthermore, the squared and

cubed values were also added into the feature pool to expand

the 54 features to a total of 162 features. These transformed

features were included to ensure quadratic and/or cubic non-

linear relationships between the features and the exacerbation

risk could be captured by the model.

D. Reference standard

In order to build a predictive model, to identify a possible

exacerbation event, a reference standard indicating each sub-

ject’s health status on certain days was constructed using the

information in the symptoms and medications questionnaires

(e.g., increase in sputum amount/medication dosage)[2]. In

this reference, for the days when the questionnaire data

and enough physiological data were available, one of two

categorical labels was assigned to the patient’s health condi-

tion: “low-risk” or “high-risk”. This reference standard was

later used in the classifier training phase, to fine-tune the

performance of the classifier, before independent validation

was performed. Since the objective is to estimate the daily

health status of each subject, the features and references were

aggregated at the level of a single day to generate modelling

data sets. This resulted in 342 days worth of data from all

seven subjects.

E. Logistic regression classifier

Logistic regression is based on a simple logistic function

defined by the formula:

P (t) =
1

1 + e−t
(6)

This classifier performs very well for predicting the out-

come of a binary variable dependent on one or more predictor

variables. That is, t is assumed to be a weighted sum of the

dependent variables (in this case the extracted features from
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Section II-C). Training the classifier involves determining

the weights of this sum to generate t, such that P (t) best

matches the training data labels. Considering in our case, the

outcomes would finally fall into two categories: “low-risk”

or “high-risk”, a logistic classifier is a reasonable choice.

F. Feature subset selection

Subset selection was employed to find the near optimal

subset of features to achieve the highest prediction accuracy.

This strategy resulted in an elimination of features from

the progressively developed model. In this paper, a forward-

backward floating search strategy was used.

The forward search attempts to find the optimal subset

of features from the pool of available candidate features.

It starts with single feature from all available features, and

then sequentially adds into the model the feature that most

improves the prediction accuracy. After a feature is selected,

removal of a feature from the current set of selected fea-

tures is attempted. The process of possible feature addition,

followed by possible feature removal is iterated until the

selected feature set converges.

G. K-fold cross validation

In this study, a double-loop ten-fold cross-validation

scheme, with inner and outer nested loops, was used.

The outer loop is used to assess the generalised perfor-

mance of the classifier model. In the outer loop, data was

repeatedly and randomly divided into two sets: modelling

data set (nine folds using 90% of the 342 days = 308 days)

and validation data set (one fold using 10% of the 342 days

= 34 days). The 34 days of validation data were withheld

and did not appear in the model selection process, while the

308 days of training data were used in the inner loop for

model selection.

An inner loop was used to perform feature selection. In

the inner loop, the modelling data was again repeatedly and

randomly divided into two subsets: test data (one fold using

10% of the 308 days = 31 days) and training data (nine

folds using 90% of the 308 days = 277 days). Again for the

inner loop, the test set was withheld from the training set

to later test with for each of the 10 cross validation folds.

The classifier was trained using the remaining 277 days of

training data. Afterwards, the withheld fold of 31 days of

test data was then reintroduced for classification. This was

repeated ten times until each fold had been test data. The

average result across all 10 folds test data was used as the

feature selection criteria.

In summary, the inner loop is used to help select the

optimal feature subset. The outer loop training data is used

for training a “best” model based on those selected features.

The outer loop validation data is later applied to the “best”

model to test it, the result of which indicates how the “best”

model performs on unseen data. To minimize the effect of

sampling bias when assigning data to folds, both the inner

and outer ten-fold cross-validations were repeated ten times.

Data was randomly reassigned to folds on each repeat.

III. RESULTS

Table I lists the performance metrics for the proposed

method. Shown are the aggregated results of the outer most

10-fold cross validation loop (each row in the table represents

one of the 10 repetitions). The result of each repetition (each

row) is calculated by averaging the results of each of the 10

folds for that repeat.

The logistic regression classifier initially returned the

estimated health risk score as a probability, which was later

rounded to 0 or 1. The confusion matrix (CM), accuracy

(Acc.) and Cohen’s kappa (κ) metrics were calculated com-

paring the binary estimated health risk score against the

reference health risk score. The area under receiver operating

characteristic (ROC) curve was also calculated and presented

(abbreviated AUC).

Fig. 2 demonstrates the box plot of the estimated health

risk score against the reference health risk score for a sample

repetition. On each box, the central mark is the median; the

edges of the box are the 25th and 75th percentiles.

The features selected in each “best” model were later

pooled together, in which 100 sets (10 repeats × 10 folds of

the outer validation loop) of “optimal” features were aggre-

gated. Fig. 3 shows a pie chart of frequency of appearance

of these features categorized by trend pattern feature type.

Fig. 4 demonstrates a similar pie chart, but categorized by

physiological parameter type.

TABLE I

A SUMMARY OF THE STATISTICAL RESULTS OF THE TEN OUTER LOOP

REPETITIONS OF LOGISTIC CLASSIFIER.

No AUC κ Acc. (%) CM

1 0.8215 0.5355 76.90
119 40
39 144

2 0.8579 0.5841 79.24
127 40
31 144

3 0.8227 0.5731 78.65
128 43
30 141

4 0.8736 0.6592 83.04
130 30
28 154

5 0.8424 0.5659 78.36
124 40
34 144

6 0.8446 0.6061 80.41
125 34
33 150

7 0.8613 0.6246 81.29
129 35
29 149

8 0.8424 0.5416 77.19
120 40
38 144

9 0.8532 0.5965 79.82
130 41
28 143

10 0.8525 0.5538 77.78
122 40
36 144

Average 0.8472 0.5840 79.27
125.4 38.3
32.6 145.7

IV. DISCUSSION AND CONCLUSION

A method for predicting daily COPD exacerbation risk has

been developed using the trend pattern features obtained from

longitudinal physiological measurement data. The method

has been evaluated using cross validation. Table I shows that
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Fig. 2. Box plot of the estimated score risk score against the reference
health risk score (logistic regression probability) for a sample repetition (the

10
th repetition in Table I).
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Fig. 3. Pooled pie chart of selected features categorized by trend pattern
feature type. In total, 100 sets of “optimal” features were aggregated.

the model has a fair average accuracy (79.27%) in classifying

between low-risk and high-risk days. The results of all the

ten repetitions show that the model selection method in the

inside loops is relatively stable with accuracies ranging from

76.9% to 83.04%. The stability can also be viewed from

other statistical indicators, such as AUC, κ and CMs. From

Fig. 2, a box plot of a sample repetition is displayed. In the

low-risk box, the median value is approximately 0.2, while

the high-risk box median value is approximately 0.9. This

further supports a good separation of risk categories using

this classification scheme.

Pooled pie charts of the selected features from all “best”

models are presented in Fig. 3 and Fig. 4. The pie chart

in Fig. 3 is categorized by the type of the trend pattern

feature, in which we can see that the most-frequently-appear

trend pattern features are tdiff and σS/σL. The piecewise

linear trend detection technique aims to capture incipient

changes in the longitudinal data. The tdiff feature is the days

since last break point day which may imply an impending
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Fig. 4. Pooled pie chart of selected features categorized by physiological
parameter type. In total, 100 sets of “optimal” features were aggregated.

health status change. The σS/σL feature could be considered

as an indicator of signal-to-noise ratio. For poor signal-

to-noise, σS/σL approaches 1. For a large signal-to-noise

ratio, σS/σL approaches 0. The implication might be large

variations in parameters imply instability. In Fig. 4 the pie

chart is divided by the type of physiological measurement,

which shows a relatively even division between the five

of the six physiological measurements, with systolic blood

pressure chosen less often. Both weight and SpO2 appeared

most frequently, each accounting for 22% of the selected

features, but not much different from HR (17%), DBP (20%)

and temperature (14%). However, it is interesting to note

that SBP is only selected 5% of the time. Edwards et al.

reported that a low blood pressure was associated with COPD

exacerbation [5], which could be identified as a SBP less than

90mmHg or a DBP less than 60mmHg. Although, both DBP

and SBP are important indicators of low blood pressure, it

seems that DBP provides more predictive power than SBP.

Although the six available physiological measurements

gave a good predictive performance, some limitation still lies

in the lack of other important physiological measurements of

the forced spirometry manoeuvre, such as forced expiratory

volume in one second (FEV1), which has been previously

reported to be associated with the severity of COPD [4].

Future work will focus on applying the method developed in

this paper to other telehealth databases with more complete

longitudinal physiological measurement records, in particular

those which contain forced and relaxed spirometry measures,

which are expected to further boost the prediction perfor-

mance demonstrated here.
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