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Abstract— We evaluated the impact of arousals on the 

performance of actigraphy-based sleep/wake classification. 

Using a dataset of 15 healthy adults and a threshold optimized 

for this task we found that the percentage of sleep epochs with 

activity counts above that threshold was significantly larger in 

epochs with and following arousals. We also found that 41.1% 

of all false positive classifications occurred in these epochs. 

Finally, we determined that excluding these epochs from the 

evaluation led to a maximum precision increase of 17.2%. 

Considering wake detections in those epochs as correct led to a 

maximum precision increase of 31.3%. We concluded that 

unless arousals can be automatically identified or at least 

distinguished from wake, the performance of actigraphy-based 

sleep/wake classifiers is limited by their presence. 

I. INTRODUCTION 

Despite important advances on unobtrusive sleep 
measurements over the last years, overnight 
polysomnographic recordings (PSG) assisted by expert 
technicians remain the gold standard for sleep medicine [1]. 
However, although PSG offers accurate physiological 
measurements during sleep, essential for the correct 
diagnosis of sleep disorders, it has severe drawbacks. High 
costs of laboratory facilities, equipment and qualified 
personnel, disruption of “normal” sleep, and impossibility to 
perform long-term monitoring, all have motivated research in 
the area of unobtrusive sleep monitoring. The area of 
actigraphy has been relatively popular in the assessment of 
sleep-wake disturbances [2]. Actigraphy consists of the 
measurement of gross body movements by means of a wrist- 
(or limb-) worn accelerometer. A measure of so-called 
“activity counts” quantifying the amount of body movements 
occurring during an epoch (typically 30 seconds long) is 
recorded and used to determine whether the subject was 
awake or resting (asleep) during that period [3]. Actigraphy 
has been indicated by the American Academy of Sleep 
Medicine (AASM) as a suitable method to assist in the 
evaluation of patients with circadian disorders and sleep-
wake disturbances, and also to assess response to therapy of 
circadian disorders and insomnia [4]. An extensive amount 
of work has been done on developing and evaluating 
actigraphy-based sleep/wake classifiers [2]. Ultimately, most 
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depend to a great extent on the amplitude of activity counts. 
In its simplest form these classifiers analyze the activity 
counts measured within a given epoch. If the value of 
activity counts is above a certain threshold, the epoch is 
classified as wake, otherwise it is classified as sleep. 
Although in practice most algorithms include more advanced 
techniques such as the analysis of the values in neighboring 
epochs [3], or the duration and periodicity of movements [5], 
it is clear that the performance of such a classifier will 
depend on the discriminative power of activity counts for 
sleep and wake. Unfortunately, in this regard actigraphy 
suffers from two important drawbacks. First, in the periods 
just before and after sleep, many subjects do not move 
although they are awake, meaning that sleep/wake estimation 
will very often overestimate sleep [6]. This problem has been 
mitigated by the use of cardiorespiratory features in addition 
to actigraphy [7], exploiting known autonomic changes 
associated with sleep [8].  The second problem is related to 
the occurrence of arousals. An arousal is defined as a rapid 
shift in the EEG frequency and can be accompanied by an 
increase of electromyographic (EMG) activity, cardiac 
frequency or body movements [9],[10]. This means that 
many sleep epochs will share some physiological 
characteristics of wake, in particular in regard to the 
presence of body movements. An example is illustrated in 
Fig. 1 where many activity peaks occurring during sleep 
epochs largely coincide with the occurrence of annotated 
arousals. This problem has been previously identified, and 
rule-based solutions involving the amplitude of activity 
counts and duration of periods of activity have been 
proposed [11].  

 

Figure 1.  Full-night recording of a healthy subject. (Top) actigraphy. 

(Bottom) after PSG scoring, with wake (black) and sleep epochs with and 

without arousals (gray and white, respectively). 

 

On the Impact of Arousals on the Performance of Sleep and Wake 

Classification Using Actigraphy 

Pedro Fonseca, Xi Long, Member, IEEE, Jerome Foussier, Member, IEEE, and Ronald M. Aarts, 

Fellow IEEE 

35th Annual International Conference of the IEEE EMBS
Osaka, Japan, 3 - 7 July, 2013

978-1-4577-0216-7/13/$26.00 ©2013 IEEE 6760



  

 Despite positive recommendations regarding the use of 
actigraphy in clinical settings [4], there is still evidence of its 
low performance in clinical populations with fragmented 
sleep or in cases where the normal sleep-wake cycle is 
disrupted [6]. In order to better understand the role arousals 
may play in this problem, we will evaluate and quantify their 
impact on the performance of actigraphy-based sleep/wake 
classifiers. 

II. METHODS AND MATERIALS 

A. Data Set 

In this study we used a data set comprising full PSG and 
simultaneously recorded actigraphy (Actiwatch, Philips 
Respironics) of 15 healthy subjects (10 females) with a 
Pittsburg Sleep Quality Index [12] of less than 6 and no 
record of respiratory or sleep diseases. The subjects had an 
average age of 31.0 (± 10.4) year. Nine subjects were 
monitored in the Sleep Health Center, Boston, USA during 
2009 (Alice 5 PSG, Philips Respironics) and six subjects 
were monitored in the Philips Experience Lab, Eindhoven, 
the Netherlands during 2010 (Vitaport 3 PSG, TEMEC). 
Arousal scoring and sleep staging was performed by a sleep 
technician according to the guidelines of the American 
Academy of Sleep Medicine (AASM) [1]. Epochs were 
further labeled as sleep if they had a sleep stage score of N1, 
N2, N3, or REM and were labeled as wake otherwise. Sleep 
epochs in which an arousal was found were labeled as 
arousal. The average total sleep time was 6.67 (± 1.15) hour 
and the average sleep efficiency was 92.63 (± 3.68) %. 
Subjects had an average of 87.00 (± 61.50) arousals, 
corresponding to an arousal index of 13.00 (± 8.95) 
arousal/hour. 

B. Arousal Neighborhood and Annotations 

Body movements following the occurrence of arousals do 
not always occur in the same epoch as the arousal. This is the 
case, for example, when body movements extend beyond the 
boundary of the epoch when the arousal starts, or when the 
arousal starts close to the end of an epoch and is followed by 
body movements in the subsequent epoch. Since the 
actigraphy recordings and the sleep staging were performed 
in non-overlapping 30 second epochs, our analysis is bound 
to their fixed boundaries. For this reason, techniques which 
could alleviate this problem using, for instance, sliding 
windows, cannot be used here. Instead, we introduce the 
concept of an “arousal neighborhood”, consisting of an 
(integer) number of epochs immediately following an 
arousal epoch. The notation Anx is used to indicate a set of 
epochs which comprise the arousal epoch and the x 
following epochs. Each neighborhood is limited by x, the 
occurrence of the next arousal, or the occurrence of a wake 
epoch. The notation arousalx is used to indicate an epoch 
which belongs to Anx. Based on the manual annotations by 
the sleep technician we define the following additional sets: 

 S – epochs labeled as sleep. 

 A – sleep epochs during which an arousal was 
scored. 

 S-A – sleep epochs where no arousal occurred. 

C. Class Similarity 

We first characterize the activity count values for each 
set of epochs introduced in the previous section. Using a 
Mann-Whitney unpaired 1-sided test [13], we determined 
whether activity counts in arousal epochs are significantly 
larger than in sleep epochs and whether (and to which extent) 
increasing the neighborhood size led to an increase in the 
value of activity counts. 

D. Sleep/Wake Classification 

The simplest way to classify sleep and wake is to analyze 
the activity counts measured during each epoch of the 
recording. When the activity counts are above a certain 
threshold, the epoch is classified as wake (positive class) 
otherwise it is classified as sleep. When a sleep epoch is 
erroneously classified as wake, it is considered a “false 
positive” (FP). Although several successful variations or 
additions to this method have been proposed, the 
performance of such a classifier ultimately depends on how 
well activity counts discriminate between sleep and wake. 
The threshold for sleep/wake classification was 
experimentally determined as the value T that maximizes the 
overall performance (Cohen’s kappa coefficient of 
agreement, κ [14]) of a simple epoch-based linear 
discriminant similar to one used by Devot et al. [7], across 
all subjects. 

Using this threshold we classified all epochs in the data 
set as sleep or wake. Based on the classification results, we 
analyzed the false positive rate (FPR, ratio between the 
number of false positives and the total number of epochs) for 
arousal neighborhoods of different sizes. This allowed us to 
determine whether the proportion of false positives occurring 
in A or Anx (for different values of x) was significantly 
larger than those occurring in S. We then evaluated how 
false positives were distributed over S-A, A and Anx. Here, 
instead of classifying each epoch, we classified each arousal 
neighborhood according to the maximum activity count in 
the epochs that comprise it. If that value was above the 
threshold T, the whole neighborhood was considered to have 
a false positive. 

Finally, we evaluated the performance of the classifier. 
Receiver operating characteristic (ROC) curves are not well-
suited for this problem since wake and sleep are imbalanced 
(92.8% of the epochs in our data set were labeled as sleep) 
[15]. Recall (or sensitivity) was computed as the ratio 
between the number of true positives (TP, wake 
classifications occurring on epochs labeled as wake), and the 
total number of epochs labeled by the sleep technician as 
wake. Precision (or positive predictive value) was computed 
as the ratio between TP and the number of positive 
classifications (TP+FP), using different criteria for TP and 
FP (Table I). These criteria allowed us to analyze how the 
presence of arousals influenced classification performance 
under different conditions. PW corresponds to a “standard” 
precision which disregards the presence of arousals. P-A and 
P-Anx correspond to the precision of the classifier if there 
were no arousals.  
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TABLE I.  CRITERIA USED TO COMPUTE PRECISION 

 

TP  FP 

  classif. label classif. label 

PW wake wake wake sleep 

P+A wake wake wake sleep & !arousal 

P+Anx wake wake wake sleep & !arousalx 

P-A wake wake | arousal wake sleep & !arousal 

P-Anx wake wake | arousalx wake sleep & !arousalx 

     
“&”,”|” and “!” represent the logical operators “and”, “or” and “not”. 

This would be the case if we were able to automatically 
detect all epochs with or immediately following arousals. P+A 
and P+Anx give an estimate of precision in applications where 
arousals with similar characteristics as wake have the same 
importance as actual wake epochs and therefore should not 
be considered false positives, for an example when analyzing 
sleep fragmentation. 

III. RESULTS 

A. Class Similarity 

Table II compares the activity count values in different 
sets of epochs. We found the values in A to be significantly 
larger than in S-A.  The values in An1 are also significantly 
larger than in A. Increasing the neighborhood size beyond 
one epoch does not lead to a significant increase in the 
activity count values. 

B. Sleep/Wake Classification 

Fig. 2 illustrates the κ obtained after sleep/wake 
classification using different thresholds. At the threshold T 
of 28.88 we obtained the maximal κ of 0.42. At this 
threshold, there was furthermore a significant difference 
between the FPR for A (12.2%) and for An1-8 and the FPR 
for S (4.0%) (Fig. 3). This means that the fraction of epochs 
with arousals (or in the neighborhood of arousals) with high 
activity counts is significantly larger than it is, overall, in 
sleep epochs.  

Fig. 4 illustrates a stacked plot with the distribution of 
false positives (sleep epochs with activity counts above T) 
over different sets of epochs. A large percentage (41.1% in 
the subject pool) of all false positives occurs in epochs with 
arousals (25.0%) and within one or two epochs following an 
arousal (12.5% and 3.6% respectively).  

Table III indicates the recall and precision using T. P-An1, 
P-An2, P+A, P+An1, and P+An2 are significantly larger than the 
standard precision PW.  Fig. 5 illustrates the performance 
obtained with different thresholds for the criteria in Table I. 
There is an overall performance increase when arousals are 
considered. This can be further confirmed in Fig. 6, where 
the precision increase for each criterion is plotted. Excluding 
arousal neighborhoods (P-An2), we obtain an average 
precision increase of 11.9% (maximum increase of 17.2% 
for a recall of 43.4%). Considering positive classifications 
on arousal neighborhoods as true positives (P+An2), the 
average precision increase is 20.0% (maximum increase of 
31.3% for a recall of 67.1%). 

 

TABLE II.  COMPARISON BETWEEN ACTIVITY COUNTS 

Set 1 median(ac1) Set 2 median(ac2) p* 

S-A 0.00 A 0.20 < 0.001 

A 0.20 An1 0.24 < 0.005 

An1 0.24 An2 0.40 0.15 

An2 0.40 An3 0.72 0.22 

     
*Significance was tested with a Mann-Whitney unpaired 1-sided test.  

median(ac1) and median(ac2) represent the median of the activity count values for set 1 and 2. 

 

Figure 2.  κ for sleep/wake classification using different thresholds. 

 

Figure 3.  FPR for S (∞), A (0) and Anx. *, † and ‡ indicate neighborhoods 

with FPR significantly larger than for S at p<0.001, p<0.005 and p<0.05, 

respectivly, with a chi-square test with Rao-Scott correction for correlated 

data [16]. 

 

Figure 4.  Percentage of FP per set. “P” indicates the subject pool. “S-An2” 

indicates the set comprised of all sleep epochs not in the neighborhood (of 

size 2) of arousals. 

TABLE III.  RECALL AND PRECISION WITH A THRESHOLD OF 28.88 

 
Recall (%) 

Precision (%) 

 PW P-A P-An1
* P-An2

† P+A
* 

mean 

 (std) 

47.4 

 (23.3) 

43.9 

 (18.8) 

50.6 

 (20.2) 

56.6 

 (18.7) 

59.3 

 (18.2) 

57.9 

 (16.7) 

Pooled 45.0 47.2 54.4 61.2 64.0 60.4 

*, † and ‡ indicate precision significantly larger than for W, at p<0.05, p<0.01 and p<0.001 

respectively, using a chi-square test with Rao-Scott correction for within-subject correlations [16]. 
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Figure 5.  Precision-recall curves for different precision criteria. Area 

under each curve, computed with the algorithm by Davis and Goadrich 

[15]: PW: 45.2%, P+A: 55.6%, P+An2: 67.4%, P-A: 49.4%, P-An2: 55.6%. 

 

Figure 6.  Precision increase with different criteria. Average precision 

increase: P+A: 9.4%, P+An2: 20.0%, P-A: 4.8%, P-An2: 11.9%. 

IV. DISCUSSION AND CONCLUSIONS 

Our results confirm that the activity counts in sleep 
epochs with and following arousals are significantly larger 
than in other sleep epochs. Using a threshold optimized for 
overall sleep/wake classification performance we found that 
41.1% of all false positive classifications actually occur in 
epochs with or immediately following arousals.  We also 
found that the average proportion of false positives (FPR) 
occurring in these epochs is more than three times larger than 
the proportion of false positives occurring in all sleep epochs 
(12.2% and 4.0% respectively). These results have important 
consequences. First, they mean that unless arousals can be 
detected, the precision of an actigraphy-based sleep/wake 
classifier will always be limited. If positive classifications 
occurring on these epochs can be automatically excluded, the 
precision of the classifier can increase by a maximum of 
17.2%. Alternatively, if we cannot reliably detect the 
presence of arousals during sleep but instead consider 
positive classifications on arousal epochs as correct, the 
precision of the classifier increases by a maximum of 31.3%. 
These findings are in line with earlier observations that body 
movements may follow cortical arousals during sleep [9]. 
However, the physiological consequences of these events are 
not limited to body movements. In fact, the sympathetic 
surge corresponding to the occurrence of an arousal is also 
manifested at cardiac level [9]. Interestingly, recent work in 
sleep/wake classification showed that the addition of cardiac 
features to actigraphy increases sensitivity to the wake class 
[7],[17]. In follow-up studies we will investigate whether the 

findings reported in this paper also hold when such features 
are considered and whether they are also valid in subjects 
with disrupted sleep-wake cycles. 
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