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Abstract— Selection of the most representative features is 

important for any pattern recognition system. This paper 

investigates the importance of time domain (TD) and frequency 

domain (FD) features used for automatic food intake detection 

in a wearable sensor system by using Random Forests 

classification. Features were extracted from signals collected 

using 3 different sensor modalities integrated into the 

Automatic Ingestion Monitor (AIM): a jaw motion sensor, a 

hand gesture sensor and an accelerometer. Data was collected 

from 12 subjects wearing AIM in free-living for a 24-hr period 

where they experienced unrestricted intake. Features from the 

sensor signals were used to train the Random Forests classifier 

that estimated the importance of each feature as part of the 

training process. Results indicated that FD features from the 

jaw motion signal and TD features from the accelerometer 

signal were the most relevant features for food intake detection.  

I. INTRODUCTION 

The study of ingestive behavior of individuals is 
particularly important to detect and correct patterns of food 
intake associated with obesity and eating disorders. Obesity 
is the excessive body fat accumulation caused by a chronic 
imbalance between energy intake and energy expenditure. 
The prevalence of obesity among adults was reported to be 
35.5% in United States in 2009-2010 [1]. Eating disorders 
(ED) are serious mental disorders that cause disturbances on 
eating habits or weight-control behavior of individuals [2]. 
Anorexia nervosa, bulimia nervosa and binge eating disorder 
are the most common ED with lifetime prevalence ranging 
from 0.6 to 4.5% in the United States [3]. Both obesity and 
ED are medical conditions highly resistant to treatment and 
that can have severe physical and physiological health 
consequences [4]. Thus, the implementation of objective and 
accurate methods for Monitoring Ingestive Behavior (MIB) 
is critical to provide an adequate assessment of intake 
particularly in individuals who would most benefit from 
professional assistance.  

Current methods for MIB rely on subjects self-reporting 
their daily intake (i.e. what, when and how much they ate). 
Although these methods may be provide reliable information 
when performing laboratory experiments, their reliability 
vanishes when subjects are asked to report their intake in 
free-living situations. Consequently, there is a need for 
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objective, innovative strategies to accurately assess free-
living food intake patterns in humans. 

Wearable sensor systems have been implemented for 

automated food intake detection. These systems monitor 

physiological changes related to food intake using 

noninvasive sensors that, together with signal processing and 

pattern recognition algorithms, are used to determine when 

food is consumed. In [5] the sounds generated during 

chewing and/or swallowing of food were captured by 

microphones placed in the ear canal. The acoustic signals 

were used to develop computer algorithms that achieved 

food intake detection accuracies between 83% and 86%. In 

[6] and [7], swallowing sounds were captured by a miniature 

microphone placed over the throat. The acoustic information 

was used to create group and individual models to detect 

periods of food intake [8]. Higher detection rates were 

observed for individual models suggesting the need for 

calibration. Food intake detection through monitoring of 

chewing using a piezoelectric strain gauge sensor was 

introduced in [9]. An SVM classifier was able to achieve 

81% accuracy for single meal experiments. Most of the 

pattern recognition approaches described in this paragraph 

achieved acceptable detection accuracies in laboratory 

experiments, however their performance will most probably 

be affected in free-living conditions due to the influence of 

real life situations that are not possible to take into account 

in a laboratory setup. 

The selection of the most representative features from 

sensor signals is critical to obtain pattern recognition systems 

that accurately predict food intake in free living. In this 

study, we used Random Forests ensemble classification 

technique to estimate the importance of time domain (TD) 

and frequency domain (FD) features for describing food 

intake. Features were extracted from signals collected using 

a wearable sensor system (Automatic Ingestion Monitor, 

AIM) that monitored jaw motion, hand to mouth gestures 

and body acceleration. Subjects wore AIM in free-living for 

a 24-hr period while performing ad libitum intake. Results 

indicated that the most important features were in the FD for 

the jaw motion sensor signal. Accelerometer features also 

presented high level of importance whereas the hand gesture 

features were not as important as the other sensor features. 

II. METHODS 

A. Data Collection 

A total of 12 subjects (6 male, 6 female) participated in 

this study. The average age was 26.7 y (SD ± 3.7) and the 

average body mass index (BMI) was 24.39 kg/m
2
 (SD ± 
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3.81). Subjects did not present any medical condition that 

would affect normal food intake. The study was approved by 

the Internal Review Board at The University of Alabama and 

subjects read and signed an informed consent document.  

Each subject was asked to wear the sensor system AIM in 

free-living for a 24-hr period where they accomplished ad 

libitum intake and were able to perform daily living activities 

without restrictions. AIM consists of a wireless module that 

integrates 3 different sensor modalities: 

1- A jaw motion sensor to detect characteristic motion of 

the jaw during chewing [9], [10]. This sensor was attached 

directly below the ear using medical adhesive. 

2- A hand gesture sensor to detect hand-to-mouth (HtM) 

gestures associated to bites. It consists of a RF transmitter 

worn on the inner side of the dominant arm and a RF receiver in 

the wireless module operating in RFID frequency band of 125Khz.  

3- A tri-axial accelerometer located in the wireless 

module to detect body acceleration. 

The jaw motion signal was acquired at a 1 kHz sampling 

frequency whereas the hand gesture and accelerometer 

signals were acquired at a 10 Hz and 100 Hz respectively. 

All sensor signals were quantized with 12-bit resolution and 

delivered in near real time via Bluetooth to an Android smart 

phone that acted as a data logger. An example of the signals 

collected after 24-hr is showed in Figure 1. 

A push button was included in AIM as the primary 

method for self-reporting food intake. Subjects pressed and 

held the button during chewing to mark food intake. The 

push button signal was used as the gold standard for training 

the Random Forests classifier. 

 

Figure 1.  Example of the signals collected after a subject wore the 

wearable sensor system for 24-hr. 

B. Signal Preprocessing and Feature Extraction 

The jaw motion signal, JM (t), and the accelerometer 

signals, ACCX(t), ACCY(t), and ACCZ(t), were high-pass 

filtered (0.1 Hz cutoff frequency) to remove the DC 

component. JM (t), ACCX(t), ACCY(t), and ACCZ(t) were then 

normalized to compensate for variations in signal amplitude 

between subjects. The hand gesture signal, HG (t), was 

normalized with respect to its maximum value. HtM gestures 

shorter than 0.25s and longer than 7.5s were removed from 

HG(t) as it was assumed that they did not belong to food 

intake activity. 

JM(t), HG(t), ACCX(t), ACCY(t), ACCZ(t), and push 

button (self-report) signals were divided into non-

overlapping 30s epochs that presented a fine time resolution 

that is suitable for monitoring brief ingestion events such as 

snacking.  A set of TD and FD features were extracted from  

the signals (Table 1,Table 2, andTable 3) and then combined 

to create a feature vector fi 
N

 that represented each 30s 

epoch.  

To compute the FD features of JM(t), the frequency 

spectrum of the signal within an epoch was divided into 

different frequency ranges. These ranges may potentially 

contain important information related to different activities 

that could help to discriminate between intake and no intake 

episodes (i.e. 1.25-2.5 Hz for chewing, 2.5-10 Hz for 

walking, and 100-300 Hz for talking [10]) 

Each feature vector fi was associated with a class label ci 

= {'no food intake'; 'food intake'} for the classification task. 

A class label belonged to 'food intake' (ci =1) if at least 10s 

of the self-report signal within the i-th epoch reported food 

intake; otherwise, it belonged to 'no food intake' (ci=-1). 

TABLE 1. TIME AND FREQUENCY DOMAIN FEATURES EXTRACTED FROM 

EACH EPOCH OF THE JAW MOTION SIGNAL  

# Description # Description 

1 Mean Absolute Value (MAV) 20 
Energy spectrum in chewing 

range (chew_ene) 

2 Root Mean Squared (RMS) 21 
Entropy of spectrum chewing 

range (chew_ene) 

3 Maximum value (Max) 22 chew_ene / spectr_ene 

4 Median value (Med) 23 
Energy spectrum in walking 

range (walk_ene) 

5 MAV / RMS 24 
Entropy of spectrum walking 

range (chew_ene) 

6 Max / RMS 25 walk_ene / spectr_ene 

7 MAV / Max 26 
Energy spectrum in talking 

range (chew_ene) 

8 Med / RMS 27 
Entropy of spectrum talking 

range (chew_ene) 

9 Signal entropy (Entr) 28 talk_ene / spectr_ene 

10 Num. of zero crossings (ZC) 29 chew_ene / walk_ene 

11 Mean time between ZC  30 chew_entr / walk_entr 

12 Num. of peaks (NP) 31 chew_ene / talk_ene 

13 Average range 32 chew_entr / talk_entr 

14 Mean time between peaks 33 walk_ene / talk_ene 

15 NP/ZC 34 walk_entr / talk_entr 

16 ZC/NP 35 Fractal dimension (fractal_d) 

17 Wavelength 36 
Peak frequency in chewing 

range (maxf_chew) 

18 Num. slope sign changes 37 
Peak frequency in walking 

range (maxf_walk) 

19 
Energy of frequency spectrum 

(spectr_ene) 
38 

Peak frequency in talking 

range (maxf_talk) 
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TABLE 2. TIME DOMAIN FEATURES EXTRACTED FROM EACH EPOCH OF THE 

HAND GESTURE SIGNAL 

# Description # Description 

1 
Num. of HtM gestures within epoch 

(num_HtM) 
6 Wavelength 

2 Duration of HtM 7 Wavelength / Duration HtM 

3 MAV of HtM 8 Duration HtM / num_HtM 

4 Stardard Deviation (SD) of HtM 9 MAV_HtM / Duration HtM 

5 Maximum value (Max_HtM)   

 
TABLE 3. TIME DOMAIN FEATURES EXTRACTED FROM EACH EPOCH OF THE 

ACCELEROMETER SIGNALS 

# Description # Description 

1 MAV of ACCX (MAV_x) 12 Entropy of ACCY 

2 SD of ACCX (SD_x) 13 MAV of ACCZ (MAV_z) 

3 Median of ACCX (Median_x) 14 SD of ACCZ (SD_z) 

4 
Num. of zero crossings for ACCX 

(ZC_x) 
15 Median of ACCZ (Median_z) 

5 Mean time between ZC for ACCX 16 Num. of ZC for ACCZ (ZC_z) 

6 Entropy of ACCX 17 
Mean time between ZC for 

ACCZ 

7 MAV of ACCY (MAV_y) 18 Entropy of ACCZ 

8 SD of ACCY (SD_y) 19 
MAV of ACCZ , ACCZ and 

ACCZ combined (MAV_xyz) 

9 Median of ACCY (Median_y) 20 
SD of ACCZ , ACCZ and 

ACCZ combined (SD_xyz) 

10 
Num. of zero crossings for ACCY 

(ZC_y) 
21 

Entropy of ACCZ , ACCZ and 

ACCZ combined (Entr_xyz) 

11 Mean time between ZC for ACCY   

C. Random Forests 

Random forests is a ensemble classification technique 

developed by Breiman [11]. A collection of mtree decision 

trees are created and the final decision for a test point is 

obtained by aggregating the results for each tree using 

majority vote. Trees are constructed using different bootstrap 

samples of the original dataset. At each node of a tree, a set 

of mtry features are randomly selected from the F available 

features and the best split is chosen among those mtry 

features. Random Forests performs very well compared to 

other classifiers [12] with the main advantage of being robust 

against overfitting.  

Two parameters are necessary to set for training the 

Random Forests classifier: the number of trees in the forest 

(mtree) and the number of features in the random subset at 

each node (mtry). A grid search procedure was implemented 

using a reduced dataset to find the optimal set of parameters 

by varying mtree ={100, 200, 300, ... , 1500} and mtry = {s/2, 

s, 2·s, 4·s, 8·s,} where 8 Fs  as the suggested in [11].  

An important characteristic of Random Forests is that it 

can estimate the relative importance of a feature. This is 

done by calculating the increase in classification error of the 

samples that were not included in the bootstrap sample when 

the values of a specific feature are permuted while all other 

feature values remain unchanged. Consequently, features 

with higher increase in error are considered more important 

than features with lower increase in error. For that reason, 

Random Forests was used in this study to determine which 

features contain relevant information to discriminate between 

food intake and no food intake in free living. 

A leave one out cross-validation procedure was used to 

train a Random Forests classifier. This allowed creating a 

classifier with data from 11 subjects and validating with data 

from the subject that was left out, which was completely 

independent of the training set. A total of 10 runs of the 

cross-validation procedure were performed using the optimal 

set of mtree and mtry values to obtain more general results. 

III. RESULTS 

Results of the grid search procedure indicated that mtree = 

400 and mtry = 32 was the optimal combination of parameters 

(73.2% classification accuracy). Results of the feature 

importance estimations for each signal are showed in Figures 

2, 3, and 4. The most important feature for JM(t) was the 

ratio between the entropy of the spectrum in the walking 

range and the entropy of the spectrum in the talking range. 

The most important feature for HG(t) was the duration of 

HtM gestures within the 30s epoch. Finally, the most 

important feature for the accelerometer signals was the 

standard deviation of the signal in the y-axis. 
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Figure 2.  Results of feature importance for the jaw motion sensor signal 
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Figure 3.  Results of feature importance for the hand gesture sensor signal 
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Figure 4.  Results of feature importance for the accelerometer signals 

IV. DISCUSSION 

An accurate and objective detection of food intake in free 

living is highly desirable to obtain reliable information about 

dietary intake of individuals. An objective detection can be 

obtained by using pattern recognition algorithms whereas an 

accurate detection is more challenging and could be obtained 

by extracting relevant information from the sensor signals. In 

this work, a Random Forests classification algorithm was 

used to estimate the importance of features extracted from 

three different sensor modalities: a jaw motion sensor to 

monitor chewing, a hand gesture sensor to monitor bites and 

an accelerometer to monitor body motion. As expected, the 

results showed that the jaw motion features presented the 

most valuable information for food intake detection in free 

living. Accelerometer signals also presented features with 

relative high importance compared to jaw motion features.  

Hand gesture features presented the lowest importance. 

Results for the jaw motion sensor signals showed that the 

most important features were in the FD. This is can be 

observed in Figure 2, were five FD features presented 

considerably higher level of importance than the remaining 

features. They were related to both energy and entropy of the 

spectrum at the chewing (1.25-2.5 Hz), walking (2.5-10 Hz) 

and talking (100-300 Hz) frequency ranges. Results also 

indicated that both chewing and walking ranges appear to be 

critical to detect intake. The high importance of the walking 

range was not expected as subjects did not spent much time 

walking. However, due to the chewing and walking ranges 

being very close in spectral content, it is possible that the 

walking range may included information about chewing. 
Results of the feature importance estimation for the 

accelerometer signals showed that the most relevant features 
were extracted from the y-axis, which represented the 
acceleration on the frontal plane of the body. The SD, the 
mean time between ZC and the MAV of the signal within an 
epoch were the main features selected. These features may 
help to discriminate between periods of body motion and 
quietness. Therefore, since many individuals consume their 
meals mostly in a stationary position, it is reasonable to think 
that accelerometer features would help to detect food intake. 

For the hand gesture sensor signal, the number of HtM 
gestures and their duration within the epoch were the most 

important features as estimated by Random Forests. 
However, these features showed a low importance level 
compared to the jaw motion and accelerometer features. The 
hand gesture sensor detected gestures that were not related to 
food intake (i.e. subjects operating a cell phone while 
eating). For this reason, hand gesture features by themselves 
may not provide an accurate food intake prediction.   

The results presented in this study may be used in different 
ways. One of them is to use the most important features to 
perform a hierarchical classification in order to identify and 
remove data related to 'no food intake' (i.e. sleeping, working 
in a computer, watching TV, etc.). In fact, the data collected 
after 24-hr contained only about 3% of food intake data, thus 
a reduction in the amount of 'no food intake' data would help 
to obtain a more balanced dataset for classification. Another 
alternative is to rank the features according to their 
importance and use the N most significant features in 
combination with a classifier capable of a better 
representation of the nonlinear decision boundary and thus 
achieve a higher food intake detection accuracy.    
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