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Abstract— Wearable sensors have great potential for accurate
estimation of Energy Expenditure (EE) in daily life. Advances
in wearable technology (miniaturization, lower costs), and
machine learning techniques as well as recently developed
self-monitoring movements, such as the Quantified Self, are
facilitating mass adoption. However, EE estimations are affected
by a person’s body weight (BW). BW is a confounding variable
preventing meaningful individual and group comparisons. In
this paper we present a machine learning approach for BW
normalization and activities clustering. In our approach to
activity-specific EE modeling, we adopt a genetic algorithm-
based clustering scheme, not only based on accelerometer
(ACC) features, but also on allometric coefficients derived from
19 subjects performing a wide set of lifestyle and gym activities.
We show that our approach supports making comparisons be-
tween individuals performing the same activities independently
of BW, while maintaining accuracy in the EE estimate.

I. INTRODUCTION AND RELATED WORK

Accurate estimation of Energy Expenditure (EE) in am-
bulatory settings is a key element in determining the causal
relation between physical activity (PA) and health [1]. New
technologies seamlessly integrated in everyone’s life, able
to monitor behavior objectively and non-invasively, can
provide unprecedented insights on these links. Currently,
accelerometers (ACC) are the most widespread tools used
to objectively gather information about PA. The rationale
is that body motion measured close to the body center of
mass, is linearly related to EE. However, a single ACC worn
close to the center of mass cannot be used to detect specific
motion activities of lower and upper body, thus does not
provide enough detail on the relation of ACC and EE. Recent
work showed that activity type can be detected with wearable
ACC, enabling more precise, activity-specific EE estimation
[2]. A few activity-specific algorithms have been reported
[3-7]. Activity-specific algorithms first recognize activities,
and then apply an activity-specific model for EE estima-
tion. Splitting the EE estimation problem into sub-problems
showed consistent improvements compared to other methods
[3]. However, EE estimations are highly dependent not only
on the activity performed, but also on a person’s body weight.

In order to understand whether differences in aerobic or
anaerobic performance in subjects with varying body size
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are due to differences in physiology or body weight (BW),
an appropriate scaling technique must be used [8,9,10].
Appropriate scaling of EE estimation using BW will allow
users a) to compare an individual against standards in EE
assessments; b) to compare study groups; and c) to compare
longitudinal results of one individual to study e.g., growth,
weight loss, or training. BW scaling is typically done using
the ratio standard (i.e. kcal/kg [15]). Previous research
showed that the ratio standard over-corrects for body weight,
resulting in invalid conclusions on the relations between PA
and physiology [9]. Alternatives are the use of linear models
to take into account the effect of BW, relying on a linear
relation that should not be assumed [3,5,6] or allometric
models that develop power function ratios. Activity-specific
linear models that include BW to predict EE do not allow
users to compare between individuals or longitudinally for
one individual, since estimated values depend on BW. Al-
lometric scaling is an appropriate mathematical procedure
for clarifying the relation between anthropometric measures
and physiological variables [9]. However, up to now al-
lometric scaling has not been incorporated into machine
learning based EE estimators. To date, a variety of power
functions has been investigated for allometric scaling of EE
[8-10], with no consensus on an optimal approach. Exponents
depend on the level of exertion and extent to which the
activity is weight bearing, thus the allometric coefficients are
activity-dependent. As a result, in past research allometric
scaling was often inconclusive, and researchers struggled
to find a global coefficient to suit all activities [13]. In
this paper, we present a new machine learning approach
to normalize EE estimations by BW using activity-specific
allometric coefficients. Our contribution is threefold:

• We determine normalization coefficients for a wide set
of sedentary, lifestyle and sport activities, by means of
allometric modeling, which can be used for scaling EE
estimations for differences in BW.

• We use genetic algorithm-based clustering to group
activities and optimize cluster distance for activities and
allometric coefficients.

• We compare EE estimates in both BW-dependent and
BW-independent forms, showing that the proposed nor-
malization does not affect performance, while enabling
us to compare between individuals.

II. METHODS
A. BW scaling of EE estimates

Fig. 1 shows the inaccuracy of current state of the art
methods when dealing with BW in the context of EE
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Fig. 1. Relation between BW and EE during running, biking and walking.
EE estimates were obtained from an indirect calorimeter device as detailed
in Sec. III.B.2. Statistically significant relations are marked with ∗ (p <
0.05). Top row: EE in kcal/min and Pearson correlation with BW. Bottom
row: EE in METs (using the ratio standard) and Pearson correlation with
BW, showing the over-correction effect.

estimation. The top row shows the dependency of EE on BW
when no normalization is performed. Correlation (Pearsons
coefficient) is significant for weight-bearing activities, such
as walking and running. The second row shows the over-
correction effect when using the ratio standard (i.e. METs
or kcal/kg). This is especially evident for non-weight bear-
ing and intense activities such as biking. An alternative way
to clarify the relation between anthropometric measures and
physiological variables is by means of allometric models.
Allometric models are expressed as y = k ∗ xβ , where y is
the physiological variable of interest (i.e. EE), x is BW, k
a constant, and β is the scaling exponent (if β = −1, the
ratio standard is obtained). The equation can be linearized
by applying log-linear regression; logy = βlogx + logk,
where the slope β is equal to the allometric exponent. Using
this approach, we derived allometric coefficients for the
37 activities that are part of our protocol, and used the
coefficients as input features to cluster activities.

B. Automated Activity Clustering

For activity-specific EE estimation, activities are initially
clustered. The different activity groups are subsequently used
to train an activity classification algorithm. Each activity is
mapped to an activity-specific model, used to derive EE [3-
7]. Up to now, the problem of clustering activities has often
been approached using expert knowledge: researchers man-
ually grouped different activities into clusters. This manual
clustering resulted in different activity groupings, e.g. based
on motion patterns of the activity performed [3,6], or on EE
level of the activity [14]. None of these strategies take into
account BW normalization specifically, even though some
of them use linear models including BW to predict EE. The
latter approach does not allow users to make comparisons
(between individuals or longitudinally for one individual),
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Fig. 2. Block diagram of the chromosome representation and flow diagram
of the operations performed by the GA to cluster according to ACC features
and BW allometric coefficients.

since BW is part of the linear model. We propose to combine
ACC features and allometric coefficients to automatically
cluster groups of activities and normalize EE by BW.

C. Combined Activity and BW Clustering

To automate the process of clustering activities, we gen-
erated a feature space composed by the following features:

• Allometric coefficients (β).
• Motion Intensity (MI), (sum of the absolute value of

the bandpassed (between 1 and 10 Hz) ACC signal).
• Signal Power (Pow) on the vertical axis (sum of the

squared FFT components between 1 and 10 Hz).
With this feature space, we searched an optimal solution

using Genetic Algorithms (GAs). GAs are adaptive heuristic
search algorithms based on the evolutionary ideas of natu-
ral selection and genetics. GAs are well suited for multi-
objective optimisation problems as the activity clustering for
activity classification and BW normalisation. Fig. 2 shows a
block diagram of the genetic algorithm. In order to exploit
GAs for clustering, we encoded the chromosomes using one
gene per cluster center and the Davies-Bouldin (DB) index
as fitness function to evaluate each generation. The DB [16]
index applies well to the problem of clustering, since it aims
to maximize the inter-cluster distance, and at the same time,
to minimize the distance between points in a cluster. The
optimal number of clusters was five, determined by selecting
k that maximized the Calinski-Harabasz index [16].

D. Classification and Energy Expenditure Estimation

Using the activity clusters derived in section II.C, we
implemented an activity recognition algorithm, using stan-
dard Support Vector Machines (SVMs), 4 seconds non-
overlapping windows for segmentation, and the following
features: mean of the absolute bandpassed signal, median,
variance, main frequency peak and high frequency band
signal power. Following our methodology [3] for activity-
specific EE estimation, we developed five multiple-linear-
regression models, one for each cluster. Each model is
already BW-independent, due to allometric scaling, and does
not require anthropometric characteristics to be included.
Allometric coefficients were calculated as the averages of
the allometric coefficients of each activity belonging to a
cluster (see Table 1). Activity-specific ACC features for each
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model were selected using linear forward selection, in order
to model intra-individual differences in EE. Intra-individual
differences are due to the fact that in each cluster there
are activities that can be carried out at different intensities,
resulting in different EEs.

III. MEASUREMENT SETUP AND DATA
COLLECTION

A. Participants Characteristics

Participants were 25 (19 male, 6 female) healthy imec-nl
employees (mean age 30.7±5.6years, mean weight 72.7±
12.7 kg, mean height 176.8 ± 9.4 cm, mean BMI 23.1 ±
2.7 kg/m2). Imec’s internal Ethics Committee approved the
study, and each participant signed an informed consent form.
In this paper, we considered male participants only.

B. Instruments

1) ECG Necklace: The ECG Necklace [11] is a low power
wireless ECG platform. The necklace was configured to
acquire one lead ECG data at 256Hz, and ACC data from
three axis at 32Hz. The sensor was placed on the chest with
an elastic belt. ECG data were not used for this study.

2) Indirect Calorimeter: Breath-by-breath data were col-
lected using the Cosmed K4b2 indirect calorimeter. The
Cosmed K4b2 weights 1.5kg, battery included, and showed
to be a reliable measure of EE [12]. The system was
manually calibrated before each experiment according to the
manufacturer instructions.

C. Data Collection Protocol

Participants were invited for recordings on two separate
days. They reported at the lab at 8.00 a.m., after refraining
from drinking (except for water), eating and smoking in the
two hours before the experiment. The protocol included a
wide range of lifestyle and sport activities. An exhaustive
list of the activities can be found in Table 1. Each activity
was carried out for about 5 minutes.

TABLE I
ACTIVITIES CLUSTERS DERIVED BY THE GENETIC ALGORITHM

ID Number
of
Activities

β Activities

1 5 0.99 Cleaning table, washing windows, vacuum-
ing, folding clothes, stacking groceries

2 4 0.70 Running 7, 8, 9 and 10 km/h
3 6 0.05 Biking low, medium and high resistance lev-

els, 60 and 80 rpms
4 10 0.55 Lying, sitting, reading, desk work, writ-

ing, PC work, watch TV, standing, cooking,
washing dishes

5 12 0.80 Walking 3,4,5,6 km/h, walking carrying
weights, walking moving boxes, walking self
paced, walking incline (3,5 km/h, 5,10%)

biking 60 rpm lev high
biking 60 rpm lev low

biking 60 rpm lev med
biking 80 rpm lev high
biking 80 rpm lev low

biking 80 rpm lev med
cleaning table

cleaning windows
cooking

folding clothes
lying

moving boxes
PC work
reading

running 10 km/h
running 7 km/h
running 8 km/h
running 9 km/h

sitting
sitting desk work

stacking groceries
standing

vacuuming
walk carrying 4 kg

walking 3 km/h
walking 3 km/h 10% inc

walking 3 km/h 5% inc
walking 4 km/h
walking 5 km/h

walking 5 km/h 10% inc
walking 5 km/h 5% inc

walking 6 km/h
walking self-paced

washing dishes
watch TV

writing

biking 60 rpm lev high
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Fig. 3. Heat map of the differences in allometric coefficient (β) between
activities. Light colored cells indicate that similar coefficients were found
for activities. Dark regions indicate coefficient differences.

D. Performance Measures and Statistics

All analysis were performed independent of the participant
(leave-one-out cross validation). Performance of the activity
recognition model was evaluated using the percentage of cor-
rectly classified instances for each cluster. EE was evaluated
according to the Root Mean Square Error (RMSE). A paired
t-test was used to compare RMSEs between models.

IV. RESULTS
A. Relation between allometric coefficients and activities

Fig. 3 shows a heat map of the difference between allo-
metric coefficients in different activities. The map illustrates
which activities are affected by BW similarly. It is important
to note that activities with large EE (e.g. biking and run-
ning) can have very different coefficients depending on the
extent to which the activity is weight-bearing, and clustering
activities based on level of EE, as done in [14], prevents
normalization. Nevertheless grouping activities based on
allometric coefficients alone might generate clusters that are
not practically recognizable with motion sensors. Thus, we
used features representative for an activity’s motion patterns
and allometric coefficients, in the clustering (Sec. II.C).
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algorithm. All 37 activities part of our protocol are shown.
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Manual Clustering Automated Allometric Modeling
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Fig. 5. Boxplot of the RMSE averaged between clusters for manual
clustering with no BW normalization as performed in [3] compared to the
proposed approach.

B. Activity Clustering

The result of the clustering is shown in Fig. 4 and listed in
Table 1. Activities are grouped into clusters optimal for both
activity recognition and normalized EE estimation. Accuracy
of the activity recognition algorithm is 95.1%.

C. EE Estimation Comparison

Root Mean Square Error (RMSE) for EE was
0.68kcal/min for cluster 1, 1.49kcal/min for cluster
2, 1.46kcal/min for cluster 3, 0.37kcal/min for cluster 4
and 1.23kcal/min for cluster 5. Fig. 5 shows a comparison
of the RMSE of the proposed approach compared to
the non-normalized and manually clustered approach
previously published by our group [3], indicating no loss
in performance (p = 0.66 > α = 0.05). The RMSE mean
and variance across all subjects is slightly reduced. This is
an additional benefit of the normalization. Activity-specific
multiple linear regression models do not have to deal with
differences in body weight anymore. As a result, the linear
models can better represent intra-individual variations in EE
for a cluster, due to e.g. different level of motion intensity,
captured by ACC features, independently of BW.
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Fig. 6. Differences in EE for subjects with different BW (subj 8, 53.9 Kg,
and subj 18, 81.3 kg), for four activities performed at the same intensity.
Row 1: No BW scaling, resulting in higher EE estimates depending on BW.
Row 2: Over-correction when applying the ratio standard. Row 3: Results
when using the proposed cluster based BW normalization.

Fig. 6 gives a representation of the effectiveness of the
proposed approach when analyzing subjects of different BW.
The new approach reduces differences and provides a way
to compare EE levels between heterogeneous subjects, even
when performing different activities.

V. CONCLUSIONS
In this paper we proposed a new approach to tackle the

problem of BW normalization in EE estimation. We used
genetic algorithm-based clustering to develop an automated
method to optimally group activities. The clustering was
based on allometric coefficients of the clusters, as well
as on specific ACC features. So far, we used data from
male participants only, which did not allow us to investigate
sex differences. Nevertheless, our approach shows promising
results to effectively obtain BW-independent EE estimates.

The proposed algorithm allows users to compare EE
between different populations, as well as longitudinal results
of one individual undergoing e.g. growth, weight loss or
training. Such comparisons can provide useful insight into
whether differences in aerobic or anaerobic performance
in heterogeneous subjects are due to actual difference in
physiology or in body weight, as well as provide motivation
for subjects participating in physical activity interventions.
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