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Abstract² The segmentation of gait signals into single steps 

is an important basis for objective gait analysis. Only a precise 

detection of step beginning and end enables the computation of 

step parameters like step height, variability and duration. A 

special challenge for the application is the accurateness of such 

an algorithm when based on signals from daily live activities. 

In this study, gyroscopes were attached laterally to sport 

shoes to collect gait data. For the automated step segmentation, 

subsequence Dynamic Time Warping was used. 35 healthy 

controls and ten SDWLHQWV�ZLWK�3DUNLQVRQ¶V�GLVHDVH�SHUIRUPHG�D�

four times ten meter walk. Furthermore 4 subjects were 

recorded during different daily life activities. The algorithm 

enabled counting steps, detecting precisely step beginning and 

end and rejecting other movements. Results showed a 

recognition rate of steps during ten meter walk exercises of 

97.7% and in daily life activities of 86.7%. 

The segmentation procedure can be used for gait analysis 

from daily life activities and can constitute the basis for 

computation of precise step parameters. The algorithm is 

applicable for long-term gait monitoring as well as for 

analyzing gait abnormalities. 

I. INTRODUCTION 

HE analysis of human activity is a major factor in the 

clinical diagnosis and during therapy of movement 

disorders. The detection of single steps is often used as a 

measure for activity. Common rating tools for activity are 

often standard pedometers. With these tools only a 

quantitative measure of the activity is available. Information 

about fall risk or movement impairments cannot be derived 

from these quantitative measurements. However, in many 

cases detailed information about steps is necessary. 

Therefore an automated recognition and segmentation of 

single steps is necessary for a detailed calculation of step 

parameters like step length, step variability, or step time.  

Step detection based on wearable sensor systems mostly 

use accelerometer and gyroscope data. Many algorithms for 

gait cycle segmentation were based on peak detection 

methods [1-3]. Selles et al. [1] used two uni-axial 

accelerometers mounted directly below the knee to detect 

initial and terminal contact. Their algorithm first computed 
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an approximate stride length, then divided the gait into 

estimated strides and used a peak detection to locate initial 

and terminal contact for every stride. Their experiments 

were done at different walking speeds and considered to be 

applicable in clinical environments, gait labs, and daily life.  

In [2] and [3], an accelerometer was mounted on the hip. 

The algorithms for step detection were also based on finding 

minima and maxima after different preprocessing steps like 

filtering and derivation. In [4], a gait detection algorithm 

was proposed that worked on signals acquired with an ankle 

mounted accelerometer. Gait signal was processed 

sequentially to detect single gait cycles. First, moving and 

stopping blocks were separated. Second, stance and swing 

phase were classified during the moving block. Last, the 

swing phase was searched for positive peaks.  

Another approach for step detection was to divide one 

step into different gait phases [5, 6]. In Sabatini et al. [5], a 

gyroscope mounted on the foot-instep was used for data 

collection. Their algorithm assumed that one gait cycle 

consisted of four gait phases. For each transition between 

these different gait phases, threshold-based conditions were 

constructed. Therefore prior knowledge about the single 

transitions was acquired. In the same research group, 

Mannini et al. [6] developed an algorithm that used the 

different gait phases and transitions to train a four-state left-

right Hidden Markov Model. Sabatini et al. and Mannini et 

al. both evaluated their algorithms at different walking 

speeds and different inclinations using a treadmill. 

In [7], a template-based method for step segmentation was 

described. A step template was computed as the mean value 

of several steps. The template was compared to the complete 

gait signal. Using cross-correlation between the template and 

the signal, the starting points of all steps could be found. The 

disadvantage of this study was that the step template had a 

fixed length and was not adapted to different step durations.  

In our study, we also used a template based algorithm for 

step segmentation. In difference to the cross-correlation 

method, subsequence Dynamic Time Warping was 

employed. This algorithm allowed the comparison of signals 

with different length [8]. Gait signals were recorded from a 

gyroscope, mounted lateral on a sports shoe. Sensors were 

attached to the left and right shoe and data was recorded 

during specific exercises and daily life gait. 

II. METHODOLOGY 

A. Sensor platform and setup 

An inertial measurement unit produced by Shimmer 

Research (Dublin, Ireland) [9] was used to acquire kinematic 
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data. The Shimmer sensor unit is a wireless platform that can 

acquire and transmit data in real-time. The Shimmer sensor 

was very compact, lightweight and enabled using different 

sensor modules like gyroscopes and accelerometers. For step 

segmentation, gyroscope data was only used. The sensor 

platform contained a MSP430Fl 611 microprocessor running 

TinyOS with a built-in 500 series ~EMS gyroscope 

(InvenSense, Sunnyvale, CA, USA). The built in gyroscope 

enabled the measurement of rotation in three axes yaw, pitch 

and roll and provided a full scale range of ±500 °/sec and a 

sensitivity of ±2 m V /( 0 /sec). Data was transmitted wirelessly 

via Bluetooth radio or logged on local storage to a microSD 

card. The sampling frequency was adjusted to 50 Hz. An 
identical shoe model in different sizes was used to provide 

comparable conditions for data collection. The sensor units 

were attached laterally to the heel of both shoes (Fig. 1). 

Data were collected with custom software developed by 

ASTRUM IT GmbH (Erlangen, Germany). 

Figure 1: Sensor shoe setup - sport shoe with attached Shimmer 
sensor unit for gait analysis. 

B. Data collection 

The evaluated data in this study was divided into four 

different groups: 1) template data, 2) test data - healthy 

subjects, 3) test data - Parkinson patients, and 4) test data -

daily life activities. 

The data to train the algorithm optimize parameters and 

test step segmentation (groups 1-3) was collected in the 

movement disorder unit of the University Hospital Erlangen. 

Selected subjects (Tab. 1) were part of an ongoing study of 

sensor based motion analysis in Parkinson's disease [10, 11 ]. 

In this study gait data from 200 Parkinson patients and 200 

healthy subjects was already collected. Subjects had to give 

informed consent based on approval from the ethical 

committee of the University Hospital of Erlangen (Re.-No. 

4208). Included subjects were able to walk independently. In 

order to generate comparable data, subjects underwent a 

standardized 10-meter walk, where subjects walked 10 

meters four times at a comfortable walking speed. 

For data evaluation of steps during daily life activities 

(group 4), special datasets were recorded at the company 

ASTRUM IT GmbH in Erlangen. 

The individual groups' data were collected as follows: 

1) Template data: For template generation, 25 datasets 

were randomly picked from datasets recorded during 

above mentioned study. Used date originated from 

healthy subjects and 10-meter walk tests. Table I gives 

an overview of the subjects, age, and gender. 

2) Test data - healthy subjects: For development, testing 

the step segmentation algorithm, optimizing parameters 

and thresholds, 10 datasets of healthy subjects from the 

above mentioned study were picked randomly. 

3) Test data - Parkinson patients: For evaluation of the step 

segmentation algorithm in pathological gait sequences, 

10 datasets of Parkinson patients were picked randomly 

from the above mentioned study. The Hoehn and Y ahr 

Rating Scale (H&Y) and the MDS-Unified Parkinson's 

Disease Rating Scale (UPDRS) are two commonly used 

scales to rate symptoms in Parkinson's disease [12] and 

were assessed within half an hour of gait recordings. 

4) Test data - daily activity: For the analysis of daily life 

activities, 4 subjects were recorded. The subjects were 

chosen out of different age groups (20-30 years and 50-

70 years). For both age groups one male and one female 

subject was chosen. To support manual annotation of 

steps during daily activities, a video was recorded 

synchronously. All activities were performed according 

to a predefined protocol. Activities were chosen in order 

to get signals containing different walking patterns 

(regular straight walking, walking stairs, walking eight 

shaped circles) and different daily life activities (Sitting, 

lying, preparing a sandwich, washing dishes, sweeping). 

TABLE! 
CJJARACTERISTICS OP SUilJDCTS 

Characteristics 

Quantity 

Sex (m:j) 

Age (±SD) 

H&Y(±SD) 

UPDRSmotor 

score ±SD) 

Template 

data 

25 

8:17 

62 (±11) 

Test data-

healthy 

subjects 

10 

5:5 

55 (±9) 

C Gait Phases and Sensor Signals 

Test data-

Parkinson 

patients 

10 

5:5 

61 (±12) 

2.1 (±1) 

12 (±15) 

Test data-

daily 

activity 

4 

2:2 

42 (±19) 

In the recorded gyroscope data, the angular velocity in the 

sagittal plane gave information about foot roll over during 

gait (Fig. 2). The aim in this study was to recognize unique 

step sequences respectively gait cycles, not to find exact 

biomechanical reference points like heel strike and toe off. 

This could be done in a further processing step. In this study 

signals only from gyroscope sagittal plane were used. 

D. Template generation 

To generate a step template, the complete data from 

template dataset was used. This dataset included only gait 

exercises where subjects walked straight on a ten meter track 

for four times. In this special case, peak detection was used 

to extract steps. Peak detection is done on the gyroscope data 

from the sagittal plane (Fig. 2) by searching for local 

maxima, which corresponded to mid swing and the minima 

before and after. With this information the gait cycle was 

defined and all extracted steps were interpolated to 200 

samples. This was done to build an averaged step out of 25 

datasets and 681 resulting steps (Fig. 3). 
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Figure 2: Three consecutive gait cycles of angular velocity in the 
gyroscope sagittal plane. The red line shows transitions between 
swing and stance phase and the black line vice versa. 

E. Error measurement 

To obtain a reliable error value, two different parameters 

have to be considered. The first parameter is the number of 

recognized steps from the signal. The aim is to maximize 

this parameter. However, this leads to the problem that 

movements, which were no steps but similar, were 

recognized as steps. Therefore also the number of identical 

steps (those which were selected manually as well as 

recognized as steps) has to be maximized. An error 

parameter, which is the mean value of recognized steps and 

identical steps, was introduced. This led to a maximum 

number of correctly detected steps and also to a minimized 

number of false recognized steps. 

F. Subsequence Dynamic Time Warping 

Dynamic Time warping is a well-known technique for 

computing the similarity between two time series. A special 

form is the subsequence Dynamic Time Warping 

(subDTW), which allows finding specific subsequences in a 

long data stream [8]. 

Inputs for steps segmentation were a reference pattern X 

(template, Fig. 3, Fig. 4), and a longer data signal Y (Fig. 4), 

from which the steps were extracted. 
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Figure 4: The template was generated by using all 681 steps of 25 
subjects. Step signals from gyroscope sagittal plane only were 
interpolated to 200 samples and averaged. 

First, the distance matrix between the data signal Y and 

the template X was computed (Fig. 4a). Second, the 

accumulated cost matrix was calculated (Fig. 4c ), to simplify 

the process of finding an optimal warping path l8J. After 

computing the accumulated cost matrix, a distance function 

was set up (Fig 4b ). The distance functions as well as the 

end points of three found steps are illustrated in Fig 4b. 

When the distance function of found subsequences has a 

local minimum and is below a fixed threshold t, the found 

subsequence was identified as a step. The found minimum 

was identical with the step end point b*. The cheapest way 

back from top to bottom, calculated from the accumulated 

cost matrix, defined the step beginning a*. For every found 

step the algorithm checked whether a* was already used in a 

neighborhood of another step as b *, to avoid step overlaps. 

The threshold t was estimated by optimizing the reference 

value introduced in II-E. The dataset healthy test data was 

used to optimize this parameter. All possible thresholds 
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Figure 3: (a) distance matrix between reference patternX(vertical axis) and gait sequence Y (horizontal axis), (b) distance function, (c) 
resulting accumulated cost matrix between template X (vertical axis) and gait sequence Y (horizontal axis), black lines indicate the end 
points b* of the found steps. 
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within a suitable range were used once for step 

segmentation. The threshold that yielded the best result with 

respect to the reference value was chosen as fixed threshold. 

G. Step segmentation experiment 

To eliminate outliers in the gyroscope signals, a 5 sample 

median filter was used. Afterwards a Chebyshev type II 

lowpass filter (cutoff frequency 0.3 Hz, passband ripple 0.5 

dB, stopband 20 dB) was used to eliminate noise. 

To obtain reliable results for calculating error measures, 

the step patterns in the gyroscope z-axis of all test data sets 

were marked manually. For the dataset test data - daily 

activity, the recorded video was analyzed additionally to 

control the position of every single step. 

III. RESULTS 

The number of identical steps described the number of 

steps that were both segmented by the developed algorithm 

and marked by hand. Therefore, every manually segmented 

step beginning and corresponding ending was tested in a 

local neighborhood of ten samples for an automatically 

segmented step beginning or ending. If a segmented step 

was found in this region, this step was declared to be an 

identical step. Furthermore, the absolute differences between 

manual segmented starting and end points and automatically 

segmented starting and end points were calculated. The 

means of the differences of all identical steps result in the 

parameters Start dijf and End dijf. Results listed in table II. 
TABLE II 

RESULTS OF STEP SEGMENTATION 

Test data- Test data- Test data-

healthy Parkinson daily 

subjects patients activity 

Steps (Nn.) 560 668 1256 

Identical steps (No) 547 504 1092 

Identical steps (%) 97.7 75.5 86.7 

Start diff (samples) 0.03 0.03 0.03 

0.36 0.35 0.32 

gait impairments, 3D gyroscopes and accelerometers and a 

multidimensional DTW could be used. 

When based on daily life activities, the step segmentation 

worked with 86.7 % of steps correctly recognized. The 

algorithm found most of the steps and additionally avoided 

other movements to be classified as steps. A combination 

with accelerometers could here also improve the 

differentiation from other movements. If additional data of 

the other two axes of the gyroscope were used, turning 

movements could be differentiated from straight walking. 

In summary, the step segmentation algorithm based on 

DTW worked well for detecting straight steps in different 

kinds of signals. Gait sequences as well as daily activities 

could be used to segment steps. Even gait signals of patients 

with gait disorders could be segmented. 

To further improve the algorithm, different templates or 

even adaptive templates could be used. Another extension of 

the algorithm could be to detect different gait phases of one 

step or striking points like heel strike, mid swing or toe off. 

In a following study also algorithms like [6] should be used 

to compare our algorithm to existing techniques. 
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