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Abstract— This paper proposes and compares five methods
for phase estimation to measure slight change of chest move-
ment with respiration using a dual type microwave Doppler
sensor. A body direction to the sensor affects the performance
of the respiration measurement, because microwave reflection is
sensitive to the surface direction. The phase estimation from two
sensor signals is the most important part to measure respiration.
Thus, we developed new five methods for phase estimation.
These methods were evaluated by calculating correlation coef-
ficients between estimated waveforms and reference ones. The
results demonstrated that the phase estimation based on least
square method is the best for respiration measurement with
respect to both waveform estimation accuracy and calculation
time.

I. INTRODUCTION

Recently, monitoring the elderly people in their houses is
growing demand for aging society. Especially, continuous
measurement of their physiological data is important to
prevent sudden disease or accidents. Traditional wearable
devices can capture these data robustly. However, the devices
constrict their daily natural activities. Thus, the wearable
devices are not suitable for measurement in daily environ-
ment. The new contactless devices are desired for monitoring
system. A microwave Doppler sensor is promising for con-
tactless measurement in daily environment. The microwave
Doppler sensor can measure velocity of a target object
without contact. The velocity is estimated from the Doppler
shift between the transmitted microwave and the microwave
reflected by the moving object. The sensor has two important
features; 1) the microwave is transparent to common objects
such as clothes and walls but is opaque to the human
bodies and 2) the Doppler shift of the microwave is sensitive
enough to measure small movement. These features enable
contactless measurement of both respiration and heart rate
from body surface vibration using a microwave Doppler
sensor [1][2][3]. These researches were conducted under
the limited measurement condition where a target person
is located in the near front of the sensor and the person
faces the sensor. The expansion of the target area to the
daily environment is desired. Especially, for the system to
monitor the elderly people, contactless measurement of their

1H. Noguchi and T. Mori are with Department of Life Support Tech-
nology (Molten), The University of Tokyo 7-3-1 Hongo,Bunkyo-ku,Tokyo
113-0033 JAPAN, hnogu-tky at umin.ac.jp
2 H. Kubo and T. Sato are with Department of Mechano-Informatics,

The University of Tokyo 7-3-1 Hongo,Bunkyo-ku,Tokyo 113-8656 JAPAN
3 H. Sanada are with Department of Gerontological Nursing/Wound Care

Management, The University of Tokyo 7-3-1 Hongo,Bunkyo-ku,Tokyo 113-
0033 JAPAN

respiration overall a room is important to estimate their safety
and sleeping state.

In general, velocity is calculated directly from frequen-
cies of transmitted and reflected signals based on Doppler
effects. However, this approach is not suitable for respiration
measurement because a speed of the body movement with
respiration is slow and the movement itself is very small. The
other approach is estimation of signal phase in time domain
instead of frequency. The phase is sensitive to the distance
between a sensor and a target. Thus, the respiration is often
measured based on signal phase. Some researchers [4][5]
measured respiration from signal phase using the microwave
Doppler sensor under the simple condition where signals
are always captured at good S/N ratio. The condition does
not require a special method for phase estimation. However,
measurement in daily environment needs methods for stable
phase estimation because signal strength changes according
to a distance and a direction from a sensor to a target
person and the change of signal strength decreases phase
estimation performance [6]. In addition, another problem
is that the previous researches capture only frequency of
respiration. Measurement of the respiration waveform itself
is also important to monitor the elderly people and de-
tect their respiratory disease. Evaluation of the estimated
respiration waveform is important. Therefore, our research
aims are to propose new methods for phase estimation from
the microwave Doppler sensor signal and to compare the
methods based on quantitative evaluation of the estimated
chest movement waveform with respiration.

II. METHODS FOR SIGNAL PHASE ESTIMATION

A. Signal Model of Dual Type Microwave Doppler Sensor

A dual type microwave Doppler sensor is used in this
research. The sensor provides two outputs V (1) and V (2),
whose phases are 90 degrees different from each other. The
signals are represented as

V (1) = A(1) sin(
4πR

λ
+ φ0) + O(1) + w1 (1)

V (2) = A(2) sin(
4πR

λ
+ φ0 + φ0diff ) + O(2) + w2 (2)

Where A(1) and A(2) are the amplitudes of the signal, λ is
the wave length, R is the distance between the sensor and a
target, φ0 is an initial phase, φ0diff is difference of two signal
phases, O(1) and O(2) are DC offsets (in this paper, simply
called ’offset’), and w1 and w2 are noise. The difference of
two phases φ0diff is ideally 90 degree, but strict tuning of
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A) Lissajous curve and its relationship
     with target object movement

B) Vector representation of the signal and 
     phase change on the Lissajour curve

Fig. 1. The Lissajous curve of the two signal outputs

the difference is difficult. From Eq. 1 and Eq. 2, the phase
depends on the distance between the sensor and the target as

Δφ =
4πΔR

λ
(3)

This equation shows that difference of distance such as chest
movement with respiration is estimated from the difference
of signal phase. The Lissajous curve of the two signal
outputs is plotted in Fig. 1-A) . Circle movement of the
signal represents phase change. Distance change of half
wave length is equivalent to one circle rotation (2π radian).
The center of circle, which is called “offset” in this paper,
changes according to various factors such as microwave
reflection, environmental noises, electric power for sensor,
and fluctuation of microwave transmitting amplitude. This
change makes phase estimation difficult.

B. Phase Estimation based on Offset
To formulate phase change, a vectorE from an offset point
O = [O(1), O(2)]T to an output point V = [V (1), V (2)]T is
introduced as Fig. 1-B). The phase φ is regarded as a rotation
angle of the vector E. The simple calculation of the phase
φ is known [5] as

φ = arctan
(

V (1) − O(1)

V (2) − O(2)

)
(4)

However, this direct calculation is unstable near ±90 degree.
To avoid this problem, the phase φ is calculated by integra-
tion of phase difference during small sampling period. The
phase difference Δφ is directly estimated by angle difference
between two vectors at time k and k − 1 as

Δφk = arctan(
Ek ×Ek−1
Ek ·Ek−1 ) (5)

This approach needs direct offset estimation to calculate
Ek and Ek−1. The following four methods are prepared to
measure this offset. To estimate offsets, all methods require
some data samples. The sliding window is used to select
needed data samples. Three parameters are needed for sliding
window: size of window (Nwindow), sliding length in one
step (Nstep), and delay time from window start time to first
sample time (Ndelay) as Fig. 2

1) Mean of signals (MEAN): The mean of samples in a
window approaches to an offset under the conditions where
phase changes between 0 to 2π uniformly and offset is stable
in a single window. The mean calculation is the simplest
approach to estimate the offset.

Fig. 2. The parameters for the window.

2) Least Squares (LS): In small duration, the data samples
fit to a certain circle when the offset is fixed. The center of
the circle is equivalent to the needed offset. The circle fitting
problem is easily calculated using least squares method. The
circle is defined with the radius A as

‖Vi −O‖ = A (6)

where i (i = 0 · · ·n) is index of the sample in a single
window. Both the sides of the equation are squared as

‖Vi‖2 − 2V Ti O + ‖O‖2 = A2 (7)

A2 and ‖O‖2 are removed by taking the difference of Eq. 7
at the sample i and j to obtain the linear equation

2 (Vi − Vj)T O = ‖Vi‖2 − ‖Vj‖2 (i �= j). (8)

The offset O is estimated from Eq. 8 using least squares
method. For the calculation, we define that i is fixed at the
first sample index of the window and j is selected among
indices of the other data samples.

3) Hough Transformation (HOUGH): In general, the data
samples are distributed inhomogeneously. For example, when
a target object does not move, the sensor captures the
same values, which causes biased estimation. In addition,
if the number of samples is small, even small noises distort
estimation results. The popular approach to overcome these
problems is discretization of output values. In this approach,
the data area is divided into grid cells, and only occupied
cells which contain data samples are used for calculation. In
this research, the edge length of grid area is defined as

Gwidth = 2 max(max(V (1)) − min(V (1)),
max(V (2)) − min(V (2))) (9)

The centroid of the grid is the median of two signal output
V (1) and V (2). The grid area is equally divided by the
parameter Nimg. The data samples in the window are voted
into the grid cells. The voted grid cells are regarded as a
kind of image data. Hough transform[7] is used to detect a
circle from the grid.

4) Particle Filter (PF): The offset estimation from se-
quential window is regarded as a filtering problem. In this
paper, we utilize a particle filter, which is a kind of Bayesian
Filter [8]. The particle filter has less restriction of filter
design. This feature provides robust estimation of the state.
In this paper, we defined the state x with offset O and
amplitude A as

x = [O(1), O(2), A]T (10)
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It is difficult to construct the transition model because
offset movement is not predictable. Therefore, we define the
transition model as

xk = xk−1 + Δtw (11)

wherew is Gaussian noise and Δt is time difference between
k and k − 1. The w is normal distribution with mean 0
and variances for the state items σ2O1 , σ2O2 and σ2A. The
observation model is calculated based on the assumption that
the data samples fit a circle (Eq. 7) and the fitting error is
modeled as a normal distribution with mean 0 and variance
σ2obs.

p(‖Vi −O‖2 − A2|x) = N (0, σ2obs) (12)

The weight of j-th particle wj is calculated from the above
equation as

wj =
N∏
i=1

p(‖Vi −O‖2 − A2|xj) (13)

where N is the number of samples in a window.

C. Direct Phase Estimation based on Vector Difference
(DIFF)

The other method to estimate Δφ is calculating angle
difference Δθk between the vector ΔE as Fig. 1-B). As the
figure illustrates, Δφk+1 equals to Δθk. ΔEk is calculated
from V as

ΔEk = (Ek+1 +O) − (Ek +O) (14)
= Vk+1 − Vk (15)

This approach does not need to estimate offset as Eq. 15
does not contain O. Δθk is easily calculated from ΔEk and
ΔEk−1 by replacing Ek to ΔEk in Eq. 5. The performance
of this method depends on time difference between k and k−
1, because short time difference data is unstable to estimate
the angle Δθk. To avoid this problem, the data for estimation
is selected from the data sequence in the fixed interval Ndiff .

III. EXPERIMENT FOR METHOD COMPARISON

We conducted experiments to compare the methods for
phase detection. A subject stood in 1m front of a microwave
Doppler sensor (NJR4261J, New Japan Radio Co., Ltd.).
The subject changed his body direction in 45-degree step
(the body faces just front of the sensor at 0 degree) as
Fig. 3. The subject respired naturally in static posture. The
sensor data were collected at 100 Hz. For analysis, sensor
data were re-sampled at 10Hz by calculating mean of 10
samples after low-pass filtering (cut-off value 20 Hz). In
one direction measurement, the data were recorded for 60
second. The middle part (40 sec.) of the recorded data was
used for analysis. After estimation of signal phase using
each method, the distance from initial position is calculated
by integration of the phase difference Δφ. As a reference,
the chest movement with respiration was captured simultane-
ously using motion capture system (OptiTrack, NaturalPoint,
Inc.) by 10 Hz. The three markers were attached on the
thoracic wall in the front side of the subject. The wall

1 meter
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135 deg.

180 deg.

-90 deg.

-135 deg.

Fig. 3. Experiment condition
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Fig. 4. The examples of true waves and estimated wave shapes with the
evaluated value of its performance (correlation coefficient)

position was calculated as a mean of three marker positions.
The performance is evaluated by calculating correlation co-
efficient between relative movement distance estimated from
the sensor and measured by the motion capture system. From
the preliminary experiment, we decided that cut-off value is
0.5. In other words, if the correlation coefficient is more than
0.5, the waveform is regarded as good expression of chest
movement according to respiration. The typical waveforms
are shown in Fig. 4. As the figure, the estimated waveform
whose correlation coefficient is over 0.5 matches with the
reference waveform well. In the experiments, all method
parameters were optimized by the preliminary experiments.

Windows size affects performance of phase estimation
based on offset. The performance changes were evaluated.
In the experiment, window size Nwindow changed from
50 samples (0.5 sec.) to 1,500 samples (15 sec.) in 50-
sample steps. Nstep was fixed at 100. Ndelay is defined as
Nwindow/2. These parameters indicate that the offset values
were estimated at 1 Hz in all conditions. The results are
shown in Fig. 5. All methods achieved accurate respiration at
the direction where the body faced the front of the sensor (0
degree, 45 degree 90 degree, and -45 degree). Fundamentally,
the performance of estimation is expected to be symmetry
at body direction (i.e., the result at 90 degree would be
similar to that at -90 degree). However, the performances
were asymmetry. The asymmetric body surface and slight
difference of body direction might affect this difference of
performance at symmetrical angles. The graph indicated that
the methods except the particle filter needs 4-second window
size to estimate the respiration accurately. This duration
means that the methods require one cycle of respiration
for window size. The particle filter shows stable estimation
performance for change of window length. This method only
uses the previous result to estimate the current offset, which
may provide stable estimation and shorter window length.

On the other hand, the number of selected samples affects
phase estimation performance based on vector difference.
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Fig. 5. The influence of the window size on the phase estimation

TABLE I
THE EVALUATION OF RESPIRATION MEASUREMENT FROM EIGHT DIFFERENT ANGLES BY EACH ESTIMATION METHOD

0 deg. 45 deg. 90 deg. 135 deg. 180 deg. -135 deg. -90 deg. -45 deg. calc. time (sec.)
MEAN 0.91 0.63 0.55 0.12 0.17 0.10 0.40 0.76 < 1

LS 0.94 0.78 0.66 0.24 0.14 0.05 0.46 0.81 < 1
HOUGH 0.94 0.67 0.49 0.17 0.11 0.08 0.40 0.77 18

PF 0.94 0.80 0.68 0.19 0.12 0.02 0.46 0.81 168
DIFF 0.69 0.44 0.39 0.16 0.13 0.10 0.35 0.51 < 1

Fig. 6. The influence of the time step size on the phase estimation by
DIFF

The relationship between the number of selected samples
and the performance of respiration estimation was evalu-
ated. The result when the interval between selected samples
(100/Ndiff ) changes from 0.02 to 0.5 sec. is shown in Fig.
6. This method estimates respiration accurately only at 0-
degree direction. The step size at the peak of the correlation
coefficient was approx. 0.2 sec, which is corresponding to
10 sampling data. Since DIFF does not require estimation
of extra-parameters such as offset, the performance was
expected to be stable. However, the performance was worse
than that of the phase estimation based on offset. Funda-
mentally, this method uses the second-order differential of
the signals, which is weak for noise. This weakness might
decrease the performance.

The summary of the maximum value of correlation coeffi-
cient at each condition is shown in Table I. Total calculation
time is also shown in the right of the table. The time
was measured when the method calculated the long data
(the duration: 681.5 sec.) with Nwindow = 400 samples (40
sec.) and Nstep = 100 samples (10 sec.) by laptop PC.
This result indicates all methods can measure respiration
accurately when a person faces front of the sensor (0 degree).
Considering other angles (45 degree and -45 degree), the
least squares method and the particle filter achieved high
performance to estimate respiration. In addition, the result
on calculation time suggests that the least squares method is
promising for respiration with small computational cost.

IV. CONCLUSION

We proposed five methods for phase estimation to measure
respiration using a dual type microwave Doppler sensor.
These methods were compared at the various human direc-
tions and the parameters for the methods are explored by
correlation coefficient of signal waveform with a reference
data. Our experiments demonstrated that the best phase
estimation method to measure respiration is least square
method with 4-second window size. However, it is still
difficult to estimate respiration accurately when the human
body does not face the sensor. Our future work is to explore
arrangement optimization of multiple sensors based on this
result and developing new algorithm for integration of data
from distributed sensors in order to realize contactless mea-
surement of respiration whenever and wherever inhabitant is
located.
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