
  

 

Abstract— The prediction of motion intent through the 

decoding of myoelectric signals has the potential to improve the 

functionally of limb prostheses. Considerable research on 

individual motion classifiers has been done to exploit this idea. 

A drawback with the individual prediction approach, however, 

is its limitation to serial control, which is slow, cumbersome, 

and unnatural. In this work, different classifier topologies 

suitable for the decoding of mixed classes, and thus capable of 

predicting simultaneous motions, were investigated in real-time. 

These topologies resulted in higher offline accuracies than 

previously achieved, but more importantly, positive indications 

of their suitability for real-time systems were found. 

Furthermore, in order to facilitate further development, 

benchmarking, and cooperation, the algorithms and data 

generated in this study are freely available as part of 

BioPatRec, an open source framework for the development of 

advanced prosthetic control strategies. 

I. INTRODUCTION 

The simultaneous control of different degrees of freedom 
(DoF) is a highly desirable feature for a natural control of 
artificial limbs. Herein we refereed to “natural” as producing 
control analogous to that of an intact physiological system, 
which implies coordinated and simultaneous movements of 
more than one DoF. Furthermore, the input signals must be 
physiologically appropriate, and the feedback must be 
perceived as originating in the missing limb without 
requiring burdensome levels of concentration. This work is 
devoted to the decoding of mixed myoelectric signals (MES) 
in order to allow a simultaneous control of artificial limbs. 

Mixed MES have been previously decoded using an 
array of 22 surface electrodes with offline accuracies up to 
75% for 3 DoF [1]. Yatsenko et al. employed an algorithm 
based on principal component analysis, whitening, and 
orthonormalization of the feature vectors assuming linear 
relationships in the mixed MES. Based on the same 
principle, Jiang et al. proposed the biologically inspired 
Nonnegative Matrix Factorization (MNF) algorithm [2]. The 
MNF was tested for wrist movements satisfactorily 
predicting 2 out of 3 DoF. Additionally, it was compared to a 
Multi-Layer Perceptron (MLP) which showed slightly but 
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consistently better performance. Muceli et al. attributed this 
result to the MLP capabilities to handle non-linear 
relationships, and employed it for the prediction of hand 
kinematics including “hand close” as an additional 
movement [3]. As oppose to previous work predicting 
kinematics which requires additional hardware such as 
motion capture systems, and its designed for unilateral 
amputees  [3], [4], the strategies presented in this study 
require only surface MES and therefore are equally valid for 
bilateral and unilateral amputees. Additionally, both “hand 
open and close” are included together with 4 wrist 
movements for a total of 3 DoF.  

The aim of this study was to investigate different 
classifiers topologies capable of simultaneous prediction, 
and evaluated their performance in real-time in order to 
demonstrate the suitability of this approach. Until now, 
algorithms for simultaneous prediction have been evaluated 
using pre-recorded data only (offline) [1–4]. Since it has 
been shown that offline accuracy does not necessarily 
reflects real-time performance [5–9], the “motion test” 
introduced by Kuiken et al. [10] was used to provide real-
time indicators. 

Topologies such as One-Vs-All (OVA) and One-Vs-One 
(OVO) have been shown to outperform a single classifier 
predicting individual motions [8], [11], and although OVO 
yielded higher offline accuracies than OVA, it is inherently 
unable to predict simultaneous movements as the final output 
is computed by majority voting. On simultaneous 
classification, topologies with dedicated MLPs per DoF have 
also been argued to outperform a single classifier [4]. 
However, the results of our study show that this is not always 
the case, and stress the need for common data sets that allow 
proper inter-study comparisons. 

This study was approved by the Swedish Regional Ethics 
Committee in Gothenburg (626-10, T688-12). 

II. METHODS 

A. Explored Classifier Topologies 

The following topologies were implemented in 
BioPatRec and evaluated using a MLP classifier [6].  

 Single. This is the simplest and standard topology 
where all inputs feed the classifier and this is 
trained to discriminate all labels. 

 Ago/Antagonist-Mixed (AAM). This topology 
assumes that the motions are paired in 
ago/antagonist movements (essentially a DoF). 
There are as many classifiers as DoF, and each 
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classifier is feed with the feature vectors of at least 
3 classes; 2 of them are the antagonist motions 
related to the DoF; and the 3

rd
 is a mixed class 

combining all the other movements. A 4
th

 class is 
optional if the “rest” (no motion) information is 
available. The output vector contains the winner 
motion from each classifier. 

 One-Vs-All (OVA). In this topology there are as many 
classifiers as classes. Each classifier is trained to 
discriminate between one class and a mixed class 
containing the others. The output vector contains 
the winner of each classifier. 

The MLP had a sigmoid activation function and 
consisted of 2 hidden layers with the same hidden as input 
neurons. The training method was backpropagation with 
η꞊0.1 learning rate and α꞊0.1 momentum. The training was 
stochastic by randomly supplying 70% of the available 
training sets per learning iteration. A maximum of 200 
iterations was allowed for convergence. 

B. Data Acquisition and Processing 

Eight pairs of disposable Ag/AgCl electrodes in a bipolar 
configuration were placed equally distributed around the 
proximal third of the forearm; one distal and one proximal.  
The first pair (channel 1) was consistently placed along the 
extensor carpi ulnaris, and the rest following the pronation 
movement, or lateral direction. The bioelectric amplifier was 
an in-house design (MyoAmpF2F4-VGI8) with 66 dB gain, 
and embedded active filtering: 4th order high-pass filter at 20 
Hz; 2nd order low-pass filter at 400 Hz; and, Notch filter at 
50 Hz. The signals were digitalized at 2 kHz with 16-bits 
resolution. 

The subjects were guided by the software (BioPatRec 
[6]) to execute and hold the motion during 3s, and relax 
during 3s between each contraction. Three repetitions of 
each movement result in 9s of raw MES information. The 
movements were hand open and close, wrist flexion and 
extension, and pro/supination, as well as all their possible 
combinations resulting in 26 motions plus “rest” (no 
motion).  

We have previously found that under the presented 
recording method, 70% of the contraction time (cTp) 
normally eliminates periods of absent MES while conserving 
the isometric part of the contraction. This resulted in 121 
time windows of 200 ms per movement (50 ms time 
increment), see [6] for further explanation on the signal 
processing and feature extraction. 

Four time-domain signal features (mean absolute value, 
wave length, zero crossings, and slope sign changes) were 
extracted from each time window in order to from the feature 
vectors later used to feed the classifiers. 

Six subjects participated in this study and their recording 
sessions, together with the relevant subject’s information, are 
available in the BioPatRec’s bioelectric signals repository 
under the folder “6mov8ChFUS_MLP_Topologies” [6].  

C. Training and Offline Evaluation 

The total of feature vectors was divided in 40%, 20%, 
and 40% sets for training, validation, and testing, 
respectively. The feature vectors were randomly distributed 
in these sets before training. The testing set was only used to 
compute the offline accuracy once the training was 
completed. One hundred trainings were performed for each 
subject and topology. 

Statistical significance was evaluated using the  
Wilcoxon Signed-Rank test, as it has been demonstrated to 
be appropriated for comparing different classifiers in 
common data sets [12]. Statistical significance was 
considered at p < 0.05, and values preceded by “±” represent 
the standard deviation. 

D. Real-time Evaluation 

 The “Motion Test” was used for the real-time evaluation 

of the different classifier topologies [10]. Its implementation 

in BioPatRec and further description can be found in [6]. In 

summary, it consists on requesting the subject to execute the 

different motions in a randomized order while evaluating the 

following key performance indicators: 

 

 Selection time. This is the time between the first 

prediction different than “rest”, and the first correct 

prediction. It includes the time window length. 

 Completion time. It uses the same trigger as the 

selection time but elapses on the 20
th

 correct 

prediction. 

 Completion rate. This is the percentage of motions that 

achieved 20 correct predictions before timeout. 

 Real-time accuracy. It is reported as the percentage of 

correct predictions over the total number of 

predictions that occurred between the first prediction 

different to zero and the 20
th

 correct prediction. 

 
In order to avoid training bias, the topologies were tested 

in a different order for each subject. The subjects were 
allowed to familiarize themselves with the real-time 
prediction system during 5 minutes before performing each 
test. The motion test consisted of 2 trials where each 
movement was performed 3 times. The time out for motion 
completion was 10 s, and data was available for prediction 
every 50 ms. 

E. Implementation 

The topologies evaluated in this work were implemented 
in BioPatRec, an open source framework for the 
development of advanced prosthetic control strategies based 
on pattern recognition algorithms (PRAs) [6]. The 
implementation was done in a way that allows any PRA 
inside BioPatRec to be used automatically in any of the 
available topologies. This is by simply selecting the desired 
topology from a pop-menu. 

BioPatRec’s modular design allows a seamless 
implementation of algorithms on signal processing; feature 
selection and extraction; pattern recognition; and, real-time 
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control. It includes all the necessary routines for the 
myoelectric control of virtual limbs, prosthetic devices, or 
game control; from data acquisition to real-time evaluations, 
including a virtual reality environment. Furthermore, it 
provides a freely available repository of bioelectric signals 
for algorithm’s benchmarking on common data sets. 

III. RESULTS 

The graphical representation of the results is provided in 
box plots where a central mark represents the median value; 
the edges of the box are the 25th and 75th percentiles; the 
whiskers give the range of data values; and solid markers 
represent the mean values. Outliers greater than 
approximately ±2.7σ are not shown for clarity but considered 
in all calculations. A summary of the offline and real-time 
comparison between classifiers is presented in Table I. 

TABLE I.  COMPARISON BETWEEN MLP TOPOLOGIES 

 

The average offline accuracy per classifier, and grouped 
by the number of combined movements, is shown in Fig. 1. 
The selection and completion time from the motions test are 
shown in Fig. 2 and 3 respectively. The cumulative 
completion rate is displayed in Fig. 4, and finally, the real-
time accuracy is shown in Fig. 5.  

 

Figure 1.  Offline accuracy grouped by the number of combined motions. 

“Rest” represent the “no motion” class. No statistical significance was 

found on the average for all movements. 

 

Figure 2.  Selection time grouped by the combined motions. Statistical 

significance is shown by the marker  “ * ”, and only for the average values. 

 

Figure 3.  Completion time grouped by the combined motions. Statistical 

significance is shown by the marker  “ * ”, and only for the average values. 

 

Figure 4.  Cumulative completion rate plot by classifier.  

 

Figure 5.  Real-time accuracy grouped by the combined motions. 

Statistical significance is shown by the marker  “ * ”, and only for the 

average values. 

IV. DISCUSSION 

The offline results show no perceivable difference in the 
classification accuracy, but as expected, the training and 
prediction times increased as more classifiers are used. The 
real-time results show a different picture than the apparent 
similarity observed offline. Interesting differences can be 
observed between the Single and AAM topologies when 
considering the number of combined motions. The single 
MLP was faster than AAM to initially predict individual 
movements, while slower to predict 3 movements combined 
(Fig. 2). This behavior was kept through the completion time 
(Fig. 3). However, since the real-time accuracy of the Single 
MLP was lower than AAM (Fig. 5), the difference in 
completion time became marginal for individual movements. 
This is because more misclassifications were made while 
trying to reach 20 correct predictions, thus increasing the 
completion time.  
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Although the Single topology showed higher offline 
accuracies than AAM (Fig. 1), the real-time accuracy was 
found consistently opposite (Fig. 5). This is reflected in the 
lower average selection and completion times (Fig. 2 and 3), 
as well as in the cumulative completion rate, thus suggesting 
AAM as the best performing classifier (Fig. 4). It is worthy 
of notice, however, that these differences could still be 
considered as practically marginal if they are not appreciable 
by the user. The subjects reported hardly to differentiate 
between the Single and AAM topologies when testing their 
response on a virtual reality environment and prosthetic 
devices, Fig. 6. Furthermore, it could be argued that the 
introduction of control algorithms to mitigate spurious 
misclassification would make the difference between these 
topologies insignificant. Further studies are currently 
performed by our group to evaluate controllability using 
more close-to-reality tests. 

A different scenario was found for OVA, as this was 
consistently inferior offline and real-time. Although the 
subjects did not perceived difference between Single and 
AAM, they all reported OVA as slightly detrimental to the 
system response. This finding would have been harder to 
conclude if only offline comparisons were performed, thus 
stressing the need of real-time evaluations.  

Caution should be made on drawing conclusions from the 
presented absolute values in comparison with past and future 
studies. Time performance indicators strongly depend on the 
hardware used for computation. The variability introduced 
by the complexity of the task, including subject’s motivation, 
experience, and skills, should not be overlooked. Therefore, 
and although all the presented classifiers show higher 
accuracy than in previous work, true comparison cannot be 
made due to all these variables. As a candidate solution for 
this problem, the topologies presented in this work, as well 
as the data generated, are freely available in BioPatRec [6]. 
This allows repeatability and further studies employing 
common data sets. Furthermore, it serves as ground platform 
for further research and collaborations. 

 

 

Figure 6.  Simultaneous control of: 1) a multi-functional prosthetic device, 

2) a virtual arm in an Augmented Reality, and 3) computer games. Videos 

of these demonstrations can be seen on-line in BioPatRec’s projet site [13]. 

V. CONCLUSION 

A more natural control of artificial limbs requires 
coordinated and simultaneous movements. The decoding of 
mixed myoelectric signals to predict such movements is an 
alternative to direct source isolation which is considerably 
challenging when using surface electrodes.  

In this work, we demonstrated the feasibility of real-time 
simultaneous motion classification using surface 
electromyography only. More importantly, we provide a 
freely available and common development framework for 
further research. This has been made open source with the 
hope to accelerate, through the community contributions, the 
development of algorithms that will ultimately improve the 
patients’ quality of life. 
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