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Abstract— The signal measured with an electromyogram
(EMG) is the summation of all action potentials of motor
units active at a certain time. According to previous litera-
ture, one can establish the relationship between torque and
EMG/activations in a forward way, i.e., employing EMG of
multiple channels to estimate the joint torque. Once the rela-
tionship is established, the torque can be predicted with EMG
recordings. However, in some applications of neuroprosthetics
where we need to make muscle control, it is required to inversely
have an insight regarding the muscle activations under a specific
motion scenario from the corresponding torque. Motivated by
this point, this paper investigates inverse estimation of muscle
activations in random contractions at the ankle joint. Local
multiple regression is exploited for finding the relationship
between muscle activations and torque. Such technique is able
to rebuild the relationship between muscle activations and joint
torque inversely based on experimental data obtained from five
able-bodied subjects, and the resultant optimal weight matrix
can indicate each muscle’s contribution in the production of
the torque. Further cross validation on prediction of muscle
activations with joint torque with optimal weights shows that
such approach may possess promising performance.

I. INTRODUCTION

Electromyogram (EMG) signal detects the muscle elec-

trical activity and is regarded as the direct reflection of

human muscle activations, which can be widely used to

control the human-interaction robot [1], [2], [3] and the

prosthetic limb [4]. There is an explicit relationship between

human motion and EMG signals of multiple muscle groups,

making it possible to apply EMG to estimate different

types of human motion in a forward way. In past decades,

numerous works tried to forwardly establish the relationship

between EMG/activations and motion under various bio-

mechanics scenarios [5], [6], [7], [8], [9], [12], [13], [14],

[15], [16], [17], [18]. For instance, Kent [16] applied the

neurogenetic method to establish the mapping from EMG to

torque. Lloyd and Besier [8] employed EMG-driven model

to estimate muscle forces and knee joint moments. Bogey

et al. [13] proposed an EMG-based approach to determine

ankle muscle force. Clancy et al. [6] well summarized several

basic forward linear/nonlinear models on multiple extension

and flexion EMG signals for estimating joint torque. As an

important application for human-robot interaction, surface

EMG, representing the muscle activation, has to be estimated

inversely from human motion to calibrate control signals for

cooperation tasks [1]. However, currently there is limited
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work on inverse estimation of muscle activations (which

are generally represented by processed EMG signals) from

the muscle torque/force [10]. This mainly motivates us

to develop a proper solution to inversely estimate muscle

activations.

Neural activations of multiple muscles can not be deter-

mined uniquely from the joint torque or position due to

the inherent redundancy of the musculoskeletal system. One

typical way to handle such redundancy issue is to involve

an optimization to minimize a well-defined cost function

[19], for example, total muscle tension or activity. In this

paper, we are focusing on establishing the preliminary work

on the optimally estimating the muscle activations inversely

from ankle joint torque with experimental data collected from

five healthy subjects. Specifically, we investigate the inverse

estimation of activation envelopes of three muscles [Medial

Gastrocnemius (MG), Soleus (SOL), and Tibialis (TA)] at the

human lower leg simultaneously with join torque in random

(isometric) motion condition. In each circle of contractions

of muscles, a local objective cost function, associated with

muscle activations (represented by processed EMG signals)

and ankle joint torque, is established and to be minimized.

During each period for one circle of muscle contraction,

through minimizing the aforementioned cost function, a

weight matrix which may possess feature information of

muscle activation redundancy is obtained. Different feature

weight matrix corresponds to the different torque-pattern in-

formation of muscle activations. By constructing the weight

ratios among the row elements of the weight matrix, each

contribution to torque from the individual muscle can be e-

valuated respectively. For cross-validation, the feature weight

matrix is further embedded in newly-defined cost objective

function to inversely predict the muscle activations for the

subjects with constraint issues considered.

This paper is organized as follows. Section II presents the

basic description of experiment setup for the subjects. The

methodology on optimal estimation of muscle activations

inversely from torque is addressed in Section III. In Section

IV, verification results for five healthy subjects are presented.

Final remarks are concluded in Section V.

II. EXPERIMENT SETUP AND DATA PROCESSING

The data sets were collected through the following ex-

periment for five able-bodied subjects (three are males and

the other two are females). The subjects were seated on a

chair with their right foot attached to a Biodex dynamometer

(Biodex Medical Systems Inc., New York, USA). The setting

was 90 degrees for ankle joint and 110 degrees for the
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Fig. 1. Experiment setup for one of the subjects

TABLE I

TORQUE CONTRIBUTION BY MUSCLES FOR SUBJECT V1

Contraction period (s)
Torque contributions (r2i)

MG (r21) SOL (r22) TA (r23)

[3.75 5.22] 2.21% 16.59% 81.20%

[8.75 9.76] 38.22% 54.56% 7.22%

[11.33 13.94] 56.82% 37.02% 6.16%

[17.50 18.58] 4.04% 16.63% 79.53%

knee joint, straps were used on the pelvis and shoulders to

secure subjects position on the chair. The electrodes were

placed on muscles MG, SOL, and TA at each subject’s

lower leg respectively because contraction of these muscles

can be relatively relevant to the ankle joint movement.

Synchronous acquisition of the force and differential EMG

signal was performed with a sample frequency of 2048Hz by

the EMG100 amplifier and Biopac MP100 system (Biopac

Systems, Inc., Santa Barbara, USA). The experiment setup

for one subject is shown in Fig. 1. After raw EMG signals

were recorded, the EMG signals were rectified and low-

pass filtered with a 2Hz cut-off frequency. The processed

EMGs [whose unit is milli-Volt (mV)] can be regarded as

the activation envelopes of muscles to be used in the ensuing

sections.

III. ESTIMATION OF MUSCLE ACTIVATIONS FROM JOINT

TORQUE

In this work, after identification finished, only ankle joint

torque information is considered for reconstructing the acti-

vations of three muscles in the lower leg, so the redundancy

may exist in such solution for producing activations. Owing

to this, optimization technique can be exploited for the

solution. Our aim is to obtain the muscle activations from the

ankle joint torque. To achieve this, the following objective

function for local multiple regression during each contraction

process (cp), which maps the relationship between muscle

activations and ankle joint torque, is constructed to be

minimized as follows,

‖ΦcpWcp−Ucp‖2
F , (1)

where weight matrix Wcp is to be obtained, matrix Φcp

incorporates information of ankle joint torque τcp, matrix Ucp

TABLE II

DIRECT-VALIDATION ERRORS FOR FIVE SUBJECTS ON LONG-TERM (25S)

CONTRACTION PERIODS

Subject
Direct-validation RMS error (mV)

MG SOL TA

V1 0.0036 0.0049 0.0109

V2 0.0044 0.0043 0.0206

V3 0.0011 0.0040 0.0090

V4 0.0015 0.0058 0.0075

V5 0.0007 0.0023 0.0105

is composed of the three muscle activations. All of the three

matrices are evaluated during each muscles’ co-contractions

period. ‖ · ‖F denotes the Frobenius norm of matrix. In this

paper, based on the experimental data we collected, three

types of muscle for their activations are considered, SOL,

MG, and TA. During each contraction period, matrix Φcp is

constructed as

Φcp =
[

1 τcp 2τ2
cp− 1

]

,

with vectors 1 = [1, · · · ,1]T , τcp = [τcp(tcb), · · · ,τcp(tce)]
T ,

and τ2
cp = [τ2

cp(tcb), · · · ,τ2
cp(tce)]

T (tcb and tce denote the

muscle-contraction beginning and ending time instants re-

spectively). The matrix Ucp is constructed as

Ucp =
[

uMG
cp uSOL

cp uTA
cp

]

,

where

uMG
cp = [uMG

cp (tcb), · · · ,uMG
cp (tce)]

T ,

uSOL
cp = [uMG

cp (tcb), · · · ,uSOL
cp (tce)]

T ,

uTA
cp = [uTA

cp (tcb), · · · ,uTA
cp (tce)]

T ,

respectively denote the activations of MG, SOL, and TA

muscles respectively during one contraction period [tcb tce].
The optimal weight matrix W ∗cp is obtained as

W ∗cp = Φ†
cpUcp, (2)

where Φ†
cp is the pseudo inverse of matrix Φcp [11]. The

estimated activation is Ũcp = ΦcpW ∗cp.

Now we define the ratio ri = |w∗i j|/∑
3
j=1 |w∗i j|( i= 2,3, j =

1,2,3) with the entries w∗i j of W ∗cp. The ratio can reflect the

each muscle’s contribution to devote the corresponding joint

torque, which is similar as the concept of muscle synergy.

After the identification is done, in the new prediction (pr)

phase within time period [tpb, tpe], we can construct a new

cost function to be minimized with several constraints

min. ‖ΦprWpr−Upr‖2
F ,

s.t. ‖τmax
pr − τmax

cp ‖+ ‖τmin
pr − τmin

cp ‖,

‖
∫ tcb

tce

τcp(t)dt−
∫ tpb

tpe

τpr(t)dt‖,

‖Wpr−W∗cp‖F .

(3)

Such constraints may guarantee the robustness of predictions

with optimal weight matrices determined during similar

contraction in estimation phase. To improve the prediction

performance we should make calibration of weight matrices
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Fig. 2. Prediction of muscle activations for Subject V1 for different time periods for cross validation

according to the differences of torque information (peak,

integration, or etc.) between one contraction process and

the other, which seems complicated for practical use if the

optimal weight matrix appears sensitive.

IV. RESULTS AND DISCUSSIONS

In this section, we present and discuss the results of inverse

estimation of muscle activations for the three muscles: MG,

SOL, and TA under isometric condition, with ankle joint

torque information. The reconstruction of the three-muscle

activations during different contraction periods is validated

by the data collected from the five healthy subjects. Further

cross validation tests are performed as well. From Tab. I, we

could see how the weight ratios reflect such contributions of

muscles for producing the torque, for instance, in contraction

period [8.75 9.76], the MG (with r21 = 38.22%) and SOL
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TABLE III

PREDICTION ERRORS OF ACTIVATIONS FOR SUBJECT V1

Weight matrix Contraction period RMS error of muscle activations (mV) ‖τmax
pr − τmax

cp ‖+‖τmin
pr − τmin

cp ‖ ‖∫ tcb
tce

τcp(t)dt − ∫ tpb
tpe

τpr(t)dt‖
used for prediction for prediction (s) MG SOL TA (Nm) (Nms)

W ∗cp in [3.51 5.20] [15.12 15.93] 0.0050 0.0086 0.0362 2.8055 14.9166

W ∗cp in [3.51 5.20] [33.51 34.15] 0.0064 0.0116 0.0534 1.5926 17.3475

W ∗cp in [17.40 19.57] [20.32 21.83] 0.0007 0.0017 0.0061 3.6070 2.5943

W ∗cp in [17.40 19.57] [27.29 29.63] 0.0006 0.0024 0.0096 2.4996 2.1020

W ∗cp in [8.82 9.79] [22.50 23.01] 0.0147 0.0415 0.0062 7.5727 15.6670

(with r22 = 54.56%) muscles provided the main contributions

for conducting the corresponding torque in a plantar flexion.

To evaluate the overall performance, the root mean square

(RMS) error is defined as ‖Ũ −Umeasured‖/
√

L where L is

the number of time sampling during the contraction process.

Tab. II shows the RMS errors of inverse estimation during the

time period [0 25] for the five subjects in direct validation,

which are around 0.01 mV. Direct validation means that the

performance of the idetified model was evaluated with the

data which was used for the identification.

For cross validation the identified model was verified with

the other group of the data which was not used for the

identification, after the optimal weight matrix is obtained,

depending on the aforementioned constraints on torque, we

could make prediction with given torque for the newly

incoming torque variations with the identified model. Those

predictive activations were compared with the measured

values. From Fig. 2, we could see that the prediction results

well track the variation tendency and amplitudes of muscle

activations during the four new periods [15.1 16], [0 16],
[85 88.5], and [98 104]. Tab. III shows the prediction

errors. It is important to be noted that, the prediction errors

will increase if either of ‖τmax
pr − τmax

cp ‖+ ‖τmin
pr − τmin

cp ‖ or

‖∫ tcb
tce

τcp(t)dt− ∫ tpb

tpe
τpr(t)dt‖ becomes larger.

V. CONCLUSIONS

This work has presented estimation of activation-

s/processed EMG of the three muscles (MG, SOL, and TA)

inversely from ankle joint torque. To establish relationship

between activations and torque, local multiple regression

technique of weights is exploited for the estimation. The

addressed estimator/predictor shows promising performance

in estimation/prediction. The optimal weight matrix ratios

through estimation is able to imply the muscle synergy

which reflects distinct muscles’ contributions to conducting

the joint torque. However, the mapping between muscle

activations and torque are considered independently in this

local multiple regression. We will further investigate the

computational method which can take into account the

multiple muscles’ synergetic combinations in a systematic

way.
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