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Abstract— Drowsiness and lapses of responsiveness have the
potential to cause fatalities in many occupations. One subsystem
of a prototype device which aims to detect these lapses as they
occur is described.

A head-mounted camera measures several features of the eye
that are known to correlate with drowsiness. The system was
tested with eight combinations of eye colour, ambient lighting,
and eye glasses to simulate typical real-world input conditions.
A task was completed for each set of conditions to simulate a
range of eye movement—saccades, tracking, and eye closure.

Our image processing software correctly classified 99.3% of
video frames as open/closed/partly closed, and the error rate
was not affected by the combinations of input conditions. Most
errors occurred during eyelid movement. The accuracy of the
pupil localisation was also not influenced by input conditions,
with the possible exception of one subject’s glasses.

I. INTRODUCTION

In many occupations, lapses of responsiveness can have
severe, or even fatal, consequences both for employees and
for those around them. This is especially true for jobs that
require long periods of sustained attention on a monotonous
or repetitive task. For instance, commercial vehicle drivers,
pilots, air-traffic controllers, and some medical professionals
risk causing fatalities if their task-oriented attention lapses,
even briefly. A device capable of detecting these lapses and
intervening quickly has the potential to save lives.

The camera hardware and image processing software de-
scribed in this paper form one subsystem of a head-mounted
multi-modal device for measuring drowsiness and detecting
lapses of responsiveness. In addition to the camera module
there will be several channels of EEG to measure brain
activity and inertial sensors to measure head movement. By
integrating features from these three modalities it should be
possible to detect lapses more quickly and reliably than by
using EEG [1] or video [2] alone. Fig. 1 shows a concept
rendering of this device with the camera positioned on an
adjustable arm below one eye.
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A. Requirements

This device is intended to be worn as a piece of safety
equipment for a variety of occupations so it must be as un-
obtrusive to the wearer as possible. For the camera subsystem
this means that the camera must be small and positioned so
that it will not obstruct their vision.

To differentiate between blinks and drowsy eye closure
it is necessary to measure the duration of eye closure.
Drowsiness causes the duration of transient eye closures to
increase from a mean of 0.3 ms when alert to a mean of
144 ms, and also to become more variable [3]. The target
frame rate for this device is 60 fps, giving a range of up to
∼9 frames of eye closure to use as a measure of drowsiness.

The device must operate under a wide range of lighting
conditions, from office lighting to driving in direct sunlight to
driving at night. The camera subsystem must capture usable
video across this dynamic range.

The device must not restrict the motion of the wearer in
any way, so there must not be cables tethering the wearer to
any off-body equipment.

In the absence of any commercially available camera
modules meeting all of these requirements, we decided to
build our own.

II. HARDWARE

The camera module (Fig. 2) uses an OmniVision OV77351

image sensor and is connected to a Gumstix Overo Fire2

computer-on-module over a 10-bit parallel interface. The

1http://www.ovt.com
2http://www.gumstix.com

Fig. 1. Concept rendering
of the lapse detection device.
The camera is positioned be-
low one eye.

Fig. 2. Camera module developed for
the lapse detection device, measuring
12×43 mm.
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OV7735 is capable of capturing 60 fps at a resolution of
640×480. It has an on-chip image signal processor with
support for, among other things, cropping, scaling, and
automatic gain and exposure control. The Overo Fire is based
around the OMAP3530 system-on-chip which includes an
ARM Cortex-A8 processor, a C64x+ DSP core, and a parallel
camera interface.

The Gumstix captures video from the camera, applies
DSP-accelerated H.264 compression, and streams it over
Wi-Fi to a laptop for processing. This split arrangement
enables rapid development of image processing algorithms
on a PC without the memory and clock speed constraints of
an embedded processor.

The camera module includes a near-infrared (NIR) LED to
illuminate the eye. Under NIR illumination the iris appears
lighter than under visible light [4] which has the desirable
effect of increasing the contrast between the pupil and
the iris. Using infrared also enables the camera to capture
video in the dark where visible illumination would otherwise
interfere with the wearer’s vision.

III. IMAGE PROCESSING

At the lowest level, the image processing software aims
to measure the pupil position and diameter and identify
whether the eye is open or closed. From these measurements
it is possible to derive several measures that are known
to correlate with drowsiness. For example, the duration of
eye closure is known to increase with drowsiness [3], [5].
The pupil position (in combination with the measured head
position) can be used to estimate gaze direction, which in
turn can indicate diverted attention. There is also evidence
that patterns of changes in pupil diameter are correlated with
drowsiness [6].

A. Initialisation

The pupil localisation process is based on flood-filling
about a dark seed point. This is a common process for
locating connected components which we have applied to
pupil localisation [7]. In the first frame of video, the seed
point is defined to be a dark point near the centre of the
frame. To exclude dark areas from, for instance, where the
face curves back away from the camera, the brightness of
each pixel is linearly weighted by its distance from the centre
of the image. That is, for each pixel the distance to the centre
of the frame is added to its intensity. The seed point is then
defined as the global minimum of the image (Fig. 3(b)).

B. Pupil shape

The shape of the pupil is defined by flood-filling about
the seed point (Fig. 3(c)). This process starts at a point and
recursively fills all connected pixels whose values are within
a certain threshold. The flood-fill threshold can be configured
to compare each pixel either to its neighbours or to the seed
point. In this case the threshold is taken relative to the seed
point so that any blurring of the pupil–iris boundary resulting
from a slightly out of focus image will not affect the extent
of the flood.

(a) The original frame. (b) Weighted by distance from im-
age centre with global minimum
marked.

(c) Flood-filled pupil region. (d) Pupil ellipse and seed point for
next frame.

Fig. 3. Locating the pupil by flood-filling about a dark seed point.

The pupil is considered to be partly covered under two
conditions: if the widest point of the pupil is close to the top
of the pupil, or if the width of the pupil is more than twice its
height. An example of each of these cases is shown in Fig. 4.
If the pupil is not partly covered, the boundary of the pupil
is approximated by fitting an ellipse to the boundary of the
flood-filled region (Fig. 3(d)). This reduces the description
of the pupil to five parameters (coordinates of the centre,
lengths of major and minor axes, rotation). The centre of the
ellipse is then used as the seed point for the next frame.

C. Filtering

This process is prone to incorrectly labelling dark eye-
lashes as the pupil during eye closure. To avoid this, large
discontinuities in pupil position and diameter are filtered out.
That is, if in one frame the pupil diameter changes by more
than four pixels or the position changes by more than the
pupil’s radius, the “pupil” from that frame is rejected and
the one from the previous frame carried forward.

The process from Section III-B is then repeated.

D. Robustness to focus

Many existing pupil localisation algorithms rely on a
sharp boundary between the pupil and the iris. For example,

(a) A partly covered pupil during a
blink.

(b) A proportionally wide pupil re-
gion.

Fig. 4. Criteria for classifying the eye as partly closed.
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the “starburst” algorithm [8] looks for points at which the
gradient exceeds a given threshold, and the algorithm of
Świrski et al. [9] relies on a Canny edge detector. Given
the short object distance of this camera setup (and therefore
shallow depth of field) and the fact that it is prone to
being bumped while in use, the captured video can often be
slightly out of focus. This blurring reduces the gradient at the
pupil–iris boundary. Because of this, gradient-based methods
result in noticeable “jitter” in the pupil boundary when used
on video from this device. In contrast, our flood-fill-based
method searches for the points at which the intensity differs
from that of the seed point by some threshold, regardless of
the gradient. Our approach seems to be less affected by the
focus of the image.

IV. EXPERIMENT

An experiment was carried out as part of the development
process for the camera subsystem. As such, it is not an
analysis of the performance of a completed system but rather
is intended to direct the next stages of development.

The experiment aimed to determine whether the hardware
meets the requirements in Section I-A and whether the
software can identify eye features as accurately as a human.
The chosen input conditions represent a range of situations
typical of real-world usage. A total of eight input conditions
were tested, representing every combination of three binary
variables: eye colour – one subject with light irises, one with
dark; ambient lighting – office lighting and a darkened room;
glasses – with and without prescription eye glasses. From
previous experience, these three variables were expected to
have the most effect on the system’s performance.

A task was completed for each set of conditions to emulate
a typical range of eye movements—saccades, tracking, and
eye closure. The subject was seated in front of a computer
screen and instructed to watch a dot as it moved around the
screen. Initially the dot jumped to each corner of the screen
at 1 s intervals. This was followed by a random 2D tracking
task similar to that of Poudel et al. [10] for 3.5 s. At that
point a beep sounded, instructing the subject to close their
eyes. After 1.5 s another beep sounded, the subject opened
their eyes and resumed tracking for the remaining 3 s.

Every frame of video from the eight 12 s sessions (5760
frames) was manually annotated with the position and di-
ameter of the pupil. Each frame was also assigned one of
four categories: “corrupt”, if the data was visibly corrupted,
“open” if the pupil was completely visible, “partly closed”
if the pupil was partly covered by an eyelid, or “closed” if
the pupil was not visible at all.

V. RESULTS

A. Hardware

1) Video corruption: Prior to transmission from the Gum-
stix, the video is compressed to H.264. Because of the
structure of this format, if a frame is lost during transmission
over the Wi-Fi network, the subsequent frames will be
corrupt for up to 0.5 s.

The only frames which were manually classified as “cor-
rupt” occurred at the beginning of each video, lasting for
an average of 14 frames. This was expected since there is
currently no synchronisation between the Gumstix and the
laptop, meaning the laptop can miss the first few frames
of the video stream. Corruption of ∼0.25 s of video at the
beginning of the stream has no effect on the functionality of
this device.

2) Frame rate: The time at which each frame of video ar-
rived at the laptop was logged during recording. The median
frame interval for each session was close to the expected
value of 16.67 ms (60 fps). The distributions around this
value varied, probably due to differing network conditions.
Since the video is captured at a known and fixed frame
rate, the actual rate at which frames reach the laptop is not
important as long as no frames are dropped, as discussed
in Section V-A.1. Increased latency of the order observed in
this experiment will have a negligible impact on the speed at
which lapse events can be detected and relayed to the user.

B. Software

Box plots in this section have boxes indicating the inter-
quartile range, a line indicating the median, and whiskers ex-
tending to the most extreme data point within 1.5× the inter-
quartile range. For sizes given in pixels, 1 px ≈ 0.15 mm.
Subject 1 had light-coloured irises, subject 2 dark.

1) Pupil position: The error in the pupil position is
defined as the Euclidean distance between the manually
annotated centre of the pupil and the centre of the pupil
detected by the software. For six of the eight sets of input
conditions the median pupil position error was less than
0.7 pixels (Fig. 5). The remaining two were both for subject 1
with glasses. This could be because subject 1’s glasses affect
the accuracy of the pupil detection algorithm or because
the camera was poorly positioned for those measurements—
further investigation is needed to determine the cause. Re-
gardless, for the application of detecting diverted attention
by approximating gaze, an error of 3.5 px is acceptable.
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Fig. 5. Error in the position of the automatically detected pupil.
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Fig. 6. Error in the diameter of the automatically detected pupil.

2) Pupil diameter: Fig. 6 shows the differences between
the pupil diameter measured by the software and that mea-
sured manually for each set of input conditions. The errors in
the pupil diameter measurements are large enough to cause
a problem when measuring fluctuations in diameter. While
the simulated lighting conditions used in this experiment are
typical of some real-world situations, if the device is to be
used in a wide variety of situations then it will also need to
contend with rapidly changing lighting, such as when driving
past trees. Rapidly changing lighting induces fluctuations
in the pupil diameter quite separate from any induced by
drowsiness, so fluctuations in pupil diameter are unlikely to
be useful for measuring drowsiness.

3) Eye closure: The accuracy with which the software
detects eye closure is the most important performance metric
for this device. Table I compares the category that each frame
was assigned manually (Section IV) against the category
assigned by the image processing software (Section III-B).
If the software produced the same results as a human, all
off-diagonal entries would be zero. Of the 5706 uncorrupted
frames, the software categorised 38 incorrectly (0.7%). Most
of these errors, though, occurred during eye closure. 33
of these 38 errors occurred when the software classified a
“partly closed” frame as either “open” or “closed”. That is,
during a blink the software tends to keep classifying frames
as “open” for longer, and then jumps straight to “closed”.
In practical terms, if the duration of eye closure is being
used as a drowsiness indicator, categorising a “partly closed”
frame as “open” has little effect because the time that the
eyes are detected as “closed” remains the same. The errors
were evenly distributed across the combinations of input
conditions—no condition or combination of conditions was
found to increase the error rate.

TABLE I
COMPARISON OF MANUAL CLASSIFICATION TO SOFTWARE OUTPUT.

Manual
Closed Partial Open

A
ut

o

Closed 626 7 0
Partial 0 26 4
Open 1 26 5016

VI. CONCLUSIONS & FUTURE WORK

We have developed a small head-mounted camera module
that can capture video at 60 fps and transmit it wirelessly to
a PC. Both hardware and software have been shown to work
reliably under a variety of input conditions typical of real-
world usage. Differences in eye colour, ambient lighting, and
the presence of glasses had no effect on the accuracy with
which the pupil was located, with the possible exception of
one subject’s glasses.

Most importantly, the open/closed eye state was classified
incorrectly for only 0.7% of the frames, however most of
these errors occurred as the eye was closing. While the
current error level is acceptable for measuring the duration
of eye closure, it would need to be reduced if measuring the
speed at which the eyes open and close proves to be highly
predictive of future lapses.

Adding an eyelid localisation step to the algorithm could
improve the detection of the partially closed eye state and
enable measurement of the speed of eyelid movement. While
there is evidence that eyelid speed is a useful metric [11], it
is likely to be a difficult image processing task because of
the interference of eyelashes.
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