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Abstract² In the last years we have witnessed the growing 

interest in the heart rate variability (HRV) signal analysis 

during sleep. The study of the autonomic regulation during 

sleep allowed developing methods for automatic detection and 

classification of some sleep characteristics, both in physiological 

and pathological conditions. The main problems which require 

to be faced are the presence of frequent non-stationarities in 

the signal and the need of dealing with long term analysis, in 

order to provide reliable indices able to describe the whole 

night of sleep. In the present paper we are presenting some of 

the methodologies we recently employed in the study of the 

heart rate variability during sleep, ranging from time-

frequency analysis to long time correlation. Some results are 

also presented, related to different applications, dealing with 

both physiological and pathological conditions. 
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I. INTRODUCTION 

Historically, sleep is considered a phenomenon related to 

the central nervous system. From the pioneering research of 

Hans Berger sleep EEG was clearly described [1] and in 

1968 Rechtschaffen, and Kales provided clinical guidelines 

for sleep classification in different stages mainly based on 

EEG characteristics. Sleep, in fact, is not a stable and 

uniform condition: during the night, 4 to 6 cycles can be 

recognized, during which the subject switches between 

nonREM to REM (Rapid Eye Movement) sleep with a 

periodicity of about 90 min [2]; further, the nonREM sleep 

presents different characteristics of deepness that are usually 

classified in three/four stages that constitute the 

"macrostructure". Inside each sleep stage other phasic events 

("microstructure" of the sleep) may occur such as micro-

arousals, k-complexes, CAP (Cyclic Alternating Pattern) 

sequences, with alternation of A (A1, a2 and A3, 

corresponding to activations) and B (restoring to background 

conditions) phases, movements and apneas [3]. In the recent 

years the interest has grown about involvement of other 

systems and organs and dedicated researches have put into 

evidence how sleep can be considered D� ³PXOWLYDULDWH� DQG�

PXOWLRUJDQ´�SKHQRPHQRQ��,Q�SDUWLFXODU��HPSKDVLV�LV�JLYHQ�WR�

the fact that during different sleep stages and conditions, in 

both physiological and pathological situations, Autonomic 

Nervous System (ANS) behavior changes, influencing a 

multiplicity of organs: not only cardiovascular system, but 

also respiratory, muscular, endocrine-metabolic systems and 
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others [4]. Therefore direct connections among central, 

peripheral and autonomic nervous systems are most often 

found. Hence, a multivariate analysis on more signals 

including EEG, HRV, respiration, EMG and others derived 

from different organs, can help in better understanding the 

sleep mechanisms and the connections among different 

physiological systems [4 -6]. In the last years great emphasis 

was given to the study of the HRV during sleep, as a tool for 

the analysis of the ANS, and the obtained parameters have 

been used not only for a better understanding of the sleep 

physiology, but also for automatic classification of sleep 

stages  and detection of sleep disturbances. This gave rise to 

the study and development of devices for home sleep 

monitoring, wearable or integrated into the living ambient, 

with many applications to different pathologies [7]. In this 

paper we provide an overview of the methodologies we used 

for HRV analysis and of the main parameters and features 

employed at this purposes, both in physiological and 

pathological conditions. 

II. METHODS 

 A. Spectral and Cross-Spectral analysis 

The frequency analysis of the HRV signal provides a 
view of the status of the ANS: in fact the power distribution 
and the central frequency of the spectral components vary in 
relation to changes in autonomic modulation of the HR and 
depending on the central nervous system state [8]. The 
autonomic regulation is modulated in relation to the different 
sleep stages and this modulation can be quantified through 
spectral parameters obtained through the frequency analysis 
of the HRV signal. In addition, the extension of the frequency 
analysis to bivariate formulation allows achieving 
information about the coupling with other physiological 
parameters, for example between HRV and respiratory 
activity [9]. This provides parameters related to the 
cardiopulmonary coupling and find an interesting field of 
application in sleep breathing disorders studies, such as 
nocturnal apneas and athsma. 

 B. Time-frequency analysis 

The traditional spectral analysis, described in the previous 
section, requires stationarity of the signals on time windows 
of some minutes (3-5 min corresponding to 200-300 heart 
beats), thus presents some drawbacks when applied to sleep 
studies. In fact, sleep is not a uniform condition, but is 
characterized by transitions between stages, movements, 
micro-arousals, apneas, etc., that are reflected on the HR. In 
addition, the clinical sleep staging is based on time frames of 
30 sec. that are too short for a reliable HRV frequency 
analysis. For those reasons, time-frequency analysis has been 
proposed, which can be performed through different 
approaches: adaptive AR models [10, 11], time-frequency 
distributions (Wigner ± Ville, WV) [12], wavelet transform 
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(WT), Empirical Mode Decomposition (EMD) [13]. All the 
above mentioned methodologies allow the estimation of the 
spectral parameters on very short time frames (up to single 
heart beat), and are then useful for the analysis of the ANS 
balance during transient phenomena such as microarousals 
and apneas [14], or for sleep staging on time windows of 30s. 

C. Time domain analysis 

Phasic events on the EEG during sleep affect the HRV 

signal that usually presents a characteristic tachycardia 

episode. In particular, during A phases of CAP sleep we can 

observe RR interval shortening which intensity may vary 

according to the A phase type (A1, A2 or A3). Such 

episodes are usually interpreted as sympathetic activation, 

however, their time duration (in the range of a few seconds) 

does not allow a reliable frequency analysis.  For this reason 

they are usually analyzed in the time domain in terms of 

latency and amplitude in respect of the A phase onset on the 

EEG [4]. 

D. Long term correlation analysis 

In sleep study the interest is also on the night considered 

as a whole, and the information coming from the HRV 

analysis should be summarized in a few indices. In the last 

decade many different parameters have been proposed for 

the estimation of the long term correlation characteristics in 

HRV time series. Some of them are briefly described in the 

following: 

Sample Entropy (SampEn) 

SampEn(m,r) measures, with a tolerance r, the regularity 

of patterns comparing them to a given pattern of length m (m 

and r are fixed values: m is the detail level at which the 

signal is analyzed and r is a threshold, which filters out 

irregularities) [15, 16]. The adopted parameters in the 

present application are m = 2 and r = 0.2.  

Multiscale Entropy (MSE)  

MSE was proposed in order to capture HRV fluctuations 

at different degrees of resolution, i.e. in a multiscale manner 

[17]. The first step to compute MSE is the construction of 

the coarse-grained time series. Given a time series of N 

points {xi}, the coarse-JUDLQHG� WLPH� VHULHV� ^\�2�`��

determined E\�WKH�IDFWRU�2� are constructed as follows:  
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For each of these new time series, an entropy measure is 

calculated and the obtained value is plotted as a function of 

the coarse-graining scale factor. In this work the proposed 

indices were the average of the MSE values estimated over 

the time scale from 1 to 5 (MSE1) and from 10 to 20 

(MSE2). 

Lempel-Ziv Complexity (LZC) 

The measure of complexity introduced by Lempel and 

Ziv assesses the so-called algorithmic complexity, which is 

defined according to information theory as the minimum 

quantity of information needed to define a binary string. In 

case of random strings, the algorithmic complexity is the 

length of the string itself. In fact any compression effort will 

produce an information loss. The LZC quantifies the rate of 

new patterns arising with the temporal evolution of the 

signal. In order to estimate the LZC for a biological signal, it 

is necessary to transform the time series into symbolic 

sequences. The algorithm to assess LZC and the coding 

procedure is fully described in [15]. In this work we adopted 

both the binary LZC(2) and the ternary LZC(3) coding 

procedure. 

Detrended Fluctuation Analysis (DFA)  

The DFA can be simply defined as a modified root mean 

square analysis of a random walk [18]. Briefly, the time 

series to be analyzed is firstly integrated. Next, the 

integrated time series is divided into boxes of equal length, 

n. In each box of length n, a least squares line which fits the 

data (representing the trend in that box) is estimated. Next, 

the integrated time series is detrended by subtracting the 

local trend in each box. The root-mean-square fluctuation 

F(n) of this integrated and detrended time series is 

calculated. This computation is repeated over all time scales 

(box sizes) to characterize the relationship between F(n), the 

average fluctuation, and the box size n. A linear relationship 

on a log-log plot indicates the presence of power law 

(fractal) scaling. Under such conditions, the fluctuations can 

be characterized by a VFDOLQJ� H[SRQHQW� ��� WKH� VORSH� RI� WKH�

line relating log F(n) to log n. In this work two scaling 

exponents are proposed: one represents an estimation of the 

short-term fluctuations (a1 (n = 4±16)) and one of the long-

term fluctuations (a2) (n = 16±64). 

1/f Slope 

The slope of the power-low regression line of HRV fitted 

to the power spectrum for f < 0.01 Hz [19]. This index is 

strongly correlated to the DFA indices when a scaling law is 

present, but it does not permit to separately analyze the 

short- and long-term components, as for the DFA. 

III. RESULTS 

 A. Spectral and Cross-Spectral analysis 

In [9] polysomnographic sleep recordings were 

performed in 11 healthy women and the HRV signal and the 

respiration signal were obtained. The spectral and cross-

spectral parameters of the HRV signal and of the respiration 

signal were evaluated in order to estimate the autonomic 

regulation and the cardiopulmonary coupling related to the 

different sleep stages. Results confirmed previous findings 

present in literature: a sympatho-vagal balance shift toward 

parasympathetic modulation during NREM sleep and toward 

sympathetic modulation during REM sleep. Further, spectral 

analysis of the HRV signal and of the respiration signal 

indicated an higher respiration regularity during deep sleep, 

and a higher coherence between the HRV and the respiration 

signals at the respiratory frequency during NREM sleep. 

Fig.1 shows an example of the analysis: the left column is 

related to HRV frequency analysis, the central column is 

related to respiration, while the right column shows the 

squared coherence function between the two signals; from 

top to the bottom wake and the different sleep stages are 

represented.  

B. Time frequency analysis 

 Fig.2 shows a typical example of the time-variant, beat-to-

beat analysis of the HRV signal recorded during night. Each 
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spectrum corresponds to a single RR value, and all the 

spectra are represented as a function of time in the 

compressed spectral array form (CSA). Below the CSA 

representation there is the hypnogram, obtained from the 

standard polysomnography through the vusula analysis of 

EEG, EMG and EOG. The spectral components are clearly 

modulated by the different sleep stages. This suggested 

using spectral parameters coming from HRV for sleep 

staging [10]. The same analysis allowed also obtaining 

features for the detection of sleep apneas [14]. Other time 

frequency methods, such as WV Distribution, revealed to be 

effective in the study of the autonomic activations during 

arousals [12], while WT and EMD allowed the detection of 

sleep apneas [13]. Starting from the time frequency 

distributions, many different features can be extracted, also 

on very short time frames that can be fed into proper 

classification algorithm for an automatic detection and 

classification of events of interest. 

C.  Time domain analysis 

 One of the interests in the CAP sleep study is to assess the 

effect of A phases on the autonomic nervous system. It was 

demonstrated that A2 and A3 clearly modify the HRV. 

However, A1 influence is controversial. We analyzed A1 

phases on the HRV evaluating amplitude and latency of the 

minimum RR value in the 25 seconds after the A1 onset on 

the EEG and compared these indexes by taking randomly 

segments of 25 seconds during the NREM sleep. As it can 

be observed in Fig.3, the amplitude reduction of the HRV 

with and without A1 activation are similar in 25 sec, 

however, the time where the minimum RR occurs shows 

differences. HR reduction with A1 influence presents a well 

located peak around 5 seconds, while HR without A1 

activation presents a uniform distribution. This means, that 

A1 activations really have an influence on the HRV which is 

not casual even if not easily observable. 

 

E. Long term correlation analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters, able to measure the regularity and complexity 

of the HRV signal and to of time series, are calculated on 

several recordings acquired during the night. Different 

groups of subjects were analyzed: healthy subjects with high 

sleep efficiency (HSE), healthy subjects with low sleep 

Figure 2. Example of time frequency analysis during a whole night of 

sleep is shown in top panel, while the bottom panel shows the 

hypnogram obtained through a standard polysomnography 

 
Figure 1.  Power spectral density (PSD) computed from the tachogram 

of a subject during wakefulness (W), sleep stages N1, N2, and N3 and 

REM sleep (Left column); PSD computed from the respirogram of the 

same subject during the same periods, (Central column); cross-

spectrum between the tachogram and the respirogram of the same 

subject during the same periods  (right panel) [8]. 
 

Fig. 3. Left panel: Distribution of occurrence time of minumum HR 

for A1 activations (blue) and random sequences (red). Right panel: 

Distribution of amplitude changes of the minimum HR for A1 

activations (blue) and random sequences (red).  

 

 

 
Time (s) Amplitude (s) 

Number of 

activations 

Number of 

activations 

TABLE  I.  LONG TERM CORRELATION PARAMETERS 

 
Healthy Unhealthy 

HSE LSE Insomnia Apnea 
Heart 

failure 

SampEn 

(2,0.2) 
1.20±0.07 1.19±0.09 ���������� 

0.97±0.04

� 

0.90±0.10

� 

MSE1 0.88±0.19 0.82±0.14 0.75±0.17 0.96±0.28 
0.65±0.16

� 

MSE2 0.98±0.25 1.02±0.17 0.92±0.19 
1.47±0.28

� 
0.95±0.42 

LZC(2) 0.92±0.06 0.92±0.03 0.92±0.04 0.93±0.04 
0.87±0.10

� 

LZC(3) 0.79±0.05 0.80±0.03 0.78±0.07 
0.90±0.04

� 
0.80±0.09 

DFA a1 1.18±0.22 1.20±0.19 1.31±0.12 
1.44±0.27

� 

0.92±0.23

� 

DFA a2 1.03±0.09 1.05±0.08 1.01±0.08 
0.85±0.09

� 
1.05±0.10 

1/f slope 0.71±0.19 0.58±0.32 0.95±0.23 0.86±0.49 
1.34±0.50

� 

HSE = high sleep efficiency (higher than 85%), LSE = low sleep 

HIILFLHQF\��ORZHU�WKDQ��������� �D�VLJQLILFDQW�GLIIHUHQFH�ZLWK�UHVSHFW�

to HSE group (p-value < 0.05) [20] 
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efficiency (LSE), subjects affected by insomnia (insomnia), 

heart failure patients (heart failure), subjects affected by 

obstructive sleep apnea (apnea). Some of the evaluated 

parameters are graphically shown in Fig.4, while their mean 

values with the standard deviations are reported in Tab. I. 

When compared with normal subjects, the pathological 

groups showed some significant differences. In particular 

heart failure patients have significant lower entropy and 

complexity values, whereas apnea patients show an 

increased irregularity when compared with normal subjects 

with high sleep efficiency. 

IV. CONCLUSION 

In the present paper we have provided a short, and surely 

non exhaustive, review of some methodologies and 

processing techniques we have recently proposed for the 

analysis of the HRV signal during sleep. The described 

results confirm the multiorgan and multisystem involvement 

during sleep. In particular, the autonomic nervous system is 

strongly modulated, and the sympatho-vagal balance shows 

great variations along the night, in relation to the different 

sleep stages, or in correspondence of sleep events (apneas, 

microarousals, etc.), both physiological and pathological. It 

is worth remembering that HRV signal presents the 

advantage of reliable acquisitions, also in noisy conditions; 

in addition, it can be easily recorded also through wearable 

sensors or through sensors integrated into the bed, thus it is a 

good candidate for continuous monitoring of sleep quality 

and sleep disturbances at home [7]. This, however, requires 

proper processing tools. In this paper we have presented 

methodologies ranging from beat-to-beat analysis (then on 

very short periods) to whole night analysis. However, all 

these tools are intended to evaluate indices able to describe 

the whole sleep period, thus providing synthetic parameters 

to the physicians that could be integrated with the traditional 

sleep analysis for a better understanding of the underlying 

mechanisms.  
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Figure 4.  Calculation of 1/f power (top row), detrended fluctuation 

analysis (DFA) (middle row) and multiscale entropy (MSE) in 

healthy subjects (left column), and patients affected by heart failure 

(middle column) and sleep apnea (right column). 
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