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Abstract— Sleep is a physiological process with an internal 

program of a number of well defined sleep stages and 

intermediate wakefulness periods. The sleep stages modulate 

the autonomous nervous system and thereby the sleep stages are 

accompanied by different regulation regimes for the 

cardiovascular and respiratory system. The differences in 

regulation can be distinguished by new techniques of 

cardiovascular physics.  

The number of patients suffering from sleep disorders 

increases unproportionally with the increase of the human 

population and aging, leading to very high expenses in the 

public health system. Therefore, the challenge of cardiovascular 

physics is to develop highly-sophisticated methods which are 

able to, on the one hand, supplement and replace expensive 

medical devices and, on the other hand, improve the medical 

diagnostics with decreasing the patient’s risk. Methods of 

cardiovascular physics are used to analyze heart rate, blood 

pressure and respiration to detect changes of the autonomous 

nervous system in different diseases. Data driven modeling 

analysis, synchronization and coupling analysis and their 

applications to biosignals in healthy subjects and patients with 

different sleep disorders are presented. Newly derived methods 

of cardiovascular physics can help to find indicators for these 

health risks.  

I. INTRODUCTION 

Synchronization and coupling analyses of bivariate time 
series are important topics in current biomedical signal 
analysis. We use a method based on symbolic dynamics for 
detection of time-delayed coupling of time series during 
sleep in patients with obstructive sleep apnea. More 
specifically we apply this analysis to the coupling between 
heart rate and systolic blood pressure [1]. This is of high 
interest because we know that heart rate and blood pressure 
are modulated by sleep stages and by sleep pathologies. With 
each single apnea event we see changes in heart rate and 
arterial blood pressure during the night. These changes are 
the consequence of multiple effects and are shown in Fig. 1. 
In this study the symbolic coupling traces (SCT) analysis is 
used to investigate characteristics in patients with sleep 
apnea. A conventional coupling analysis based on cross 
correlation techniques can only show associations and not 
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directions of the coupling process. However, as can be seen 
in Fig. 1 the associations are directed [2]. Therefore, a 
coupling analysis should reveal the direction of coupling as 
well as the corresponding time lags. This is essential to study 
the causal relation between cortical arousal and autonomous 
nervous system arousal. This analysis of direction may reveal 
a better understanding on the underlying pathophysiological 
mechanisms of the apnea events itself and thereafter on the 
effects of treatment. The treatment of first choice is 
continuous positive pressure ventilation with continuous 
positive airway pressure (CPAP) devices [3]. This therapy is 
just a physical support of the collapsing upper airways. The 
positive pressure keeps the upper airways open so that 
normal breathing can be maintained even when the upper 
airways tend to collapse due to low muscle tone [4].  

The analysis of heart rate variability (HRV) and its 
correlation to other physiological rhythms, e.g. respiration, 
has been developed to investigate the regulation of the 
autonomic nervous system. One of it’s, so far non-fully 
understood, aspects is the mutual influence of the cardiac 
and respiratory oscillations on their respective onsets. This 
cardio-respiratory synchronization (CRS) has been observed 
previously during normal sleep. CRS has not yet been 
described during respiratory sleep disorders, involving more 
active regulatory processes. 

Figure 1. The recording of one long obstructive apnea / hypopnea event is 
shown together with all influences on arterial blood pressure [2]. The 
obstructive apnea is characterized by a cessation of airflow. In addition we 
see respiratory effort movements which make the event an obstructive one. 
Parallel with obstructive efforts we see small variations in systolic blood 
pressure. They are caused by intrathoracic pressure changes and are also 
called pulsus paradoxus. The drop in oxygen leads to hypoxemia. Parallel 
with hypoxemia we observe an increase in arterial blood pressure. At the 
end of the apnea event we see an arousal in the EEG and the EMG with a 
parallel strong increase in blood pressure. Systolic values above 220 mmHg 
are often observed. At the time of high blood pressure we can observe also 
cardiac arrhythmias which are well reflected in the blood pressure curve. 
The lowest curve shows EOG and rapid eye movements which 
characterizes the entire period as REM sleep. The REM sleep is the reason 
for the very long duration of this apnea event. Also the REM sleep is the 
reason for a high level of blood pressure during the entire period. 
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II. METHODS 

A. Symbolic Coupling Traces 

To introduce the SCT method, we consider a dynamic 
system represented by two paired one-dimensional time 
series x(t) and y(t). They are first transformed into two 
symbol sequences sx(t) and sy(t) via the transformation rule 

 
Next, we construct series of words wx(t) and wy(t) 

containing l=3 successive symbols from the time series sx(t) 
and sy(t), respectively. Hence, eight different patterns 
(d=2

l
=8) are possible. These patterns are invariant with 

respect to an arbitrary, increasing transformation of the 
amplitude. Afterwards, the bivariate word distribution 
(BWD) (pij) i=1,..,8, j=1,..,8  is estimated [14] (cf. Fig. 2). pij is 
the joint probability that the words Wi and Wj occurs at the 
same time t in the word sequences wx(t) and wy(t), 
respectively. To measure the delay-time probability matrix 
that the word Wi occurs in wx at time t and Wj occurs in wy at 
time t+τ, we introduce 

 
In order to consider short time-delayed dependencies in 

the cardiovascular system, we choose the lag τ between -20 
and 20. With the given binary symbol transformation we lose 
amplitude information, however, in time series with 
moderate noise and nonstationarities this information can be 
unreliable. Through symbolization, word transformation and 
symmetric bivariate selection of the diagonals we can 
exclude random effects and include significant coupling 
information only. In this paper, SCT is based on differences, 
which is sufficient for many applications but the symbol 
transformation can also be adapted for further use.  

Significant coupling information is quantified by two 
parameters based on the BWD-diagonals:  

 (i) The trace T of the matrix (pij)(τ) is defined as   


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It represents the fraction of both time series, which are 
structurally equivalent to each other at lag τ.  

 (ii) The parameter  
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describes the fraction of both signals, which are structurally 

diametric at lag τ (d is the number of different patterns). 

Both parameters vary from 0 to 1 and comprise the diagonals 

of the BWD only. Finally, the difference TTT   of the 

above parameters is the most appropriate choice. 

   Apart from the cross recurrence and SCT parameters, the 

classic cross correlation function R and the mutual 

information I are calculated for comparison. The cross 

correlation function reveals information about symmetric 

R(τ) > 0  and  diametric  R(τ) < 0 behavior in the time series. 

 

 
Figure 2. Scheme for calculating the bivariate word distribution. 

Starting from two time series (e.g. SPB and BBI upper part, syst. 

Blood pressure and beat-to-beat intervals resp.), a two-dimensional 

symbol sequence (middle part) is calculated by a symbol 

transformation which leads then to the bivariate word distribution 

(lower part) as the basis of parameter calculation. 

 

The mutual information, as a parameter of information 

theory, does not reveal any information about symmetric and 

diametric behavior in the time series, but is based on 

estimated distributions. 

B.  Cardio-respiratory Synchronization 

In many studies the heart beat time series as well as the 

respiration time series during sleep were investigated in a 

univariate manner. We are, however, also interested in the 

synchronization between them. It is assumed that a high 

degree of synchronization indicates a high ergonometric 

optimization of respiration and the heart beat. A function of 

deep sleep is physical recreation with very low consumption 

of energy, and therefore an ergonometric optimization is 

favored. If during sleep this synchronization is lost than this 

might indicate a lowered physical recreation. The analysis of 

respiration and heart beat using a synchrogram shows the 

loss of phase synchronization during these episodes with 

repetitive apneas. In the synchrogram method the momentary 

phase of the breathing signal RESi is reconstructed by 

calculating      1
2 / 2

i i k k+ k
φ t = π t t t t + πk  with 

1k i k+
t t < t . 

tk  is the begin of the  k-th respiratory  cycle  characterized by 
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Figure 3: Cardiorespiratory synchrogram with the associated hypnogram of 

a healthy subject. In the first two hours no clear synchronization can be 

seen, although already deep sleep occurs. In the area of t1-t2 no 

synchronization occurs because the patient is in REM sleep. Between t2 

and t3 one (4:1)-synchronization can be seen, which corresponds to a long 

deep sleep phase. In t3 - t4 this is interrupted by light and REM sleep 

phases. Between t4 and t5, again synchronization is observed, which is 

temporarily disturbed by a short period of wakefulness. Between t5 - t6 the 

test subject is mainly during REM sleep, which means that no 

synchronization occurs. From t6 to the end of the measurement (4:1)-

synchronization occurs during deep sleep. 

 

the k-th lokal minima in the original signal. ti is the time of 

the i-th heartbeat. To obtain the synchrogram, the relative 

cyclic phase     2 / 2
m i i

ψ t = φ t mod πm π  is plotted versus the 

times ti of the heartbeats. In this contribution we used m = 1 - 

in Fig. 3 all heart beats within one respiratory cycle are 

plotted. Phase synchronization in synchrograms is 

characterized by parallel horizontal lines. 

C.  Nonparametric data-driven modeling 

Modeling cardiorespiratory phase synchronization and the 

loss of synchronization may help to diagnose sleep apnea 

better in terms of risk prediction. A nonparametric modeling 

approach will be used here based on data driven functions.  

Optimal transformations and the associated concept of 

maximal correlation provide a nonparametric procedure to 

detect and determine nonlinear relationships in bivariate data 

sets. Let X and Y denote two zero-mean data sets and 
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their (normalised) linear correlation coefficient, where E[.] 

is the expectation value. The basic idea of this approach is to 

find such transformations )(Y  and )( X  that the absolute 

value of the correlation coefficient between the transformed 

variables is maximised. This leads to the maximal 

correlation. 

))(),((sup:),(
,

XYRYX 


 

The functions )(Y  and )( X  for which the supremum is 

attained are called optimal transformations. ),( YX  

quantifies nonlinear dependencies of the form 

 )()( XY .  

Especially, if there is complete statistical dependence, i.e., 

Y is a function of X or vice versa, the maximal correlation 

attains unity. Here we are mainly interested in the estimation 

of the optimal transformations for the multivariate regression 

problem  

 )(...)()(
11 mm

XXY  

This is an additive model for the (not necessarily 

independent) input variables Y,X1,...,Xm. To estimate them 

nonparametrically, we use the Alternating Conditional 

Expectation (ACE) algorithm. This iterative procedure is 

nonparametric because the optimal transformations are 

estimated by local smoothing of the data using kernel 

estimators.  

The maximal correlation and optimal transformation 

approach were applied recently to nonlinear dynamic 

systems to identify delay in lasers and partial differential 

equations in fluid dynamics. The ACE algorithm turned out 

to be a very efficient tool for nonlinear data analysis. A more 

detailed introduction to the ACE-algorithm is given in 

Wessel et al. 2007 [5].  

D. ECG-Derived Respiration 

There are several techniques to obtain the respiration signal 

from an electrocardiogram. On the one hand, there are 

techniques measuring the transthoracic impedance from the 

ECG electrodes, on the other hand, there are some 

techniques using the ECG signal itself. The latter are based 

on the beat-to-beat variations of the RR intervals (respiratory 

sinus arrhythmia) and on the morphological ECG changes 

due to respiration (P-wave, T-wave, PR-interval, Q-peaks, 

QRS area, myogram, baseline wandering). The reason for 

these changes is that the positions of ECG electrodes on the 

chest surface move relative to the heart, while transthoracic 

impedance varies, as the lungs fill and empty. We are 

applying a new algorithm which combines all of these 

changes into one integrative signal before estimating the 

ECG-derived respiration (cf. Fig. 4).  

III. RESULTS 

Considering the standard parameters, we obtain the 

following results. There are significant differences between 

the sleep stages in the parameters HF-S and LF-S (high and 

low frequency bands in SBP) in the normotensive (NT) 

diagnostic night (DD) group as well as in HF-B and LF-B 

(high and low frequency bands in HRV) in the hypertensive 

(HT) DD group (p<0.05, Kruskal–Wallis test). Interestingly, 

these differences are not present under CPAP therapy and in 

healthy controls, pointing to sleep disturbances such as 

snoring and/or apneas as the main cause for these 

differences. In the normotensive group, differences between 

the DD and the therapy CPAP night can be detected for HF-

S in light and deep sleep as well as baroreceptor sensitivity 

(BRS) in light sleep. For the NT group, differences are 

present for HF-S in light and deep sleep, for LF-B and LF-S 

in light sleep, as well as for BRS in deep sleep. Comparisons 

of patient groups with the control group (C) show significant 

differences in HF-S, light and deep sleep (NT DD versus C), 

in HF-S, LF-S during REM (NT CPAP versus C), as well as 

in LF-S during light sleep and HF-S during REM (HT CPAP 

versus C). The SCT results are compared to other standard  
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Figure 4. Example of different ECG derived respiration methods. A 

combination of all techniques was combined in an integrative 

algorithm for ECG-based apnea detection (cf. text). 

 

methods such as cross correlation R, mutual information I, 

and recurrence quantification by means of linear as well as 

nonlinear autoregressive models [6]. R and I are calculated 

also for differential time series to have a more appropriate 

comparison. Nevertheless, both parameters still have 

problems to detect time-delayed couplings in oscillating 

signals with noise interaction which results in additional 

coupling terms. In our data, we see R and I detecting too 

many lags, whereas the SCT and ΔRR consistently detect the 

lags 0 and 2. In addition, the SCT detects also lag +2 for that 

example of deep sleep. 

Regarding the synchronization analysis using 

synchrograms, we were able to detect different behavior 

depending on the sleep stages. Cardiorespiratory 

synchronization occurs during light and deep sleep but not in 

REM-sleep. We also could show that subjects suffering from 

sleep disorders like apnea were not able to attain a state of 

cardiorespiratory synchronization during sleep. Using the 

model-based approach we simulated cardiorespiratory 

synchronization. Short segments of cardiorespiratory 

synchronization are found only for regular breathing and 

dominant model functions.  

Finally, we applied our algorithms for estimating ECG-

derived respiration to blindly estimate an apnea-index 

comparable to the widely used AHI (Apnea-Hypopnea 

Index). We achieved a Pearson correlation coefficient of 

0.833 comparing our index to an index based on apneas as 

scored by qualified technicians. 

IV. DISCUSSION 

The time-delayed coupling analysis of the theoretical 

models and our measurements demonstrates the advantage of 

the SCT in comparison to standard methods. We confirm the 

results of [6] where SCT detects significant lags at τ =−2 and 

τ =0 for all subjects. This strengthens the opinion about 

cardiovascular short-term regulation. The symmetric lag at 

τ=0 reflects the respiratory induced pressure and heart rate 

fluctuations, whereas the diametric lag at τ =−2 represents 

the vagal feedback from heart rate to systolic blood pressure. 

We show that the coupling does not change in different sleep 

stages; however, the strength of interactions may differ. 

During deep sleep only, we see a loss of heart rate and blood 

pressure asymmetry as well as an effect of CPAP therapy on 

the cardiovascular coupling. 

Applying the synchrogram method to identify epochs of 

synchronization during sleep showed distinct behavior of the 

cardiorespiratory synchronization. The observation that 

subjects suffering from sleep disorders usually cannot attain 

synchronization during sleep corresponds with the finding 

that cardiorespiratory synchronization in waking can be 

achieved through concentration or deep relaxation. These 

findings show promise that a synchronization analysis might 

help defining a clinical measure of bodily and mental stress 

in humans. Using our nonparametric data-driven modeling 

approach we were able to show that both regular breathing 

and dominant coupling functions are necessary but not 

sufficient to obtain cardiorespiratory synchronization. 

While ECG-derived respiration is currently mostly used to 

estimate respiration rates, we show that an integration of 

multiple such signals is much more resilient to noise and can 

be used to estimate apneas based on signal morphology. 

Summarizing, our newly derived methods from 

cardiovascular physics: Data driven modeling analysis, 

synchronization and coupling analysis may help to find 

indicators for health risks of sleep disorders. 
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