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Abstract— In this paper a novel and efficient computa-
tional implementation of a Spiking Neuron-Astrocyte Network
(SNAN) is reported. Neurons are modeled according to the
Izhikevich formulation and the neuron-astrocyte interactions
are intended as tripartite synapsis and modeled with the previ-
ously proposed nonlinear transistor-like model. Concerning the
learning rules, the original spike-timing dependent plasticity
is used for the neural part of the SNAN whereas an ad-hoc
rule is proposed for the astrocyte part. SNAN performances
are compared with a standard spiking neural network (SNN)
and evaluated using the polychronization concept, i.e., number
of co-existing groups that spontaneously generate patterns
of polychronous activity. The astrocyte-neuron ratio is the
biologically inspired value of 1.5. The proposed SNAN shows
higher number of polychronous groups than SNN, remarkably
achieved for the whole duration of simulation (24 hours).

I. INTRODUCTION

Human brain information processing is a complex phe-
nomenon in which neurons and astrocyte are thought to be
the mostly involved cells. In particular, considering a tripar-
tite view of synapses, the fundamental brain activity involves
two neurons (pre- and post-synaptic) whose signaling is
modulated by astrocytes. The pre-synaptic neurotransmitters
in the synaptic cleft, in fact, stimulate specific inositol 1,4,5-
trisphosphate (IP3) production in the astrocyte leading intra-
and extra cellular calcium oscillations [1], [2]. Consequently,
the post-synaptic neural activity is modulated in amplitude
and frequency [3]. Several biophysical models have been
proposed in the literature to mathematically describe these
dynamics along with others biochemical events (e.g. cas-
cade of Glutammate, etc.) [1]–[7], especially focusing on
the evoked calcium responses in astrocytes [1], [5] and
its coupling with the synaptic transmission [2], [3]. The
vessel contribution has been also taken into account [8].
Concerning computational models, simple minimal networks
of two coupled units, a neuron and an astrocyte (the so-called
dressed neuron), have been recently investigated [4], [6].
However, none of the mentioned models have been applied to
implement more complex artificial spiking neuron-astrocyte
network (SNAN), although the role of astrocytes has been
already proven to improve the traditional neural network
performances [9], [10]. Therefore, this study aims at the
implementation of a novel SNAN based on the nonlinear
Transistor-Like Model (TLM) of dressed neuron. This choice
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is justified by the fact that TLM has been proven to be
computational efficient and its output is similar to the more
biologically inspired Li-Rinzel model [6]. TLM assumes
the dressed neuron dynamics similar to the nonlinear input-
output characteristics of a bipolar junction transistor in which
the pre-synaptic current and the IP3 production rate charac-
terize the astrocyte current. The proposed SNAN considers
both Regular Spiking (RS) and Fast Spiking (FS) behavior of
neurons. RS and FS, in fact, are the major class of excitatory
and inhibitory neurons in the neocortex, respectively. In
the SNAN implementation, both neurons are mathematically
described using the Izhikevich equations [11]. A pure spiking
neural network (SNN) was considered as gold standard for
comparison reasons. More specifically, SNN is constituted
by RS and FS neurons with axonal conduction delays and
spike-timing-dependent plasticity (STDP) learning rule [12].
It has been demonstrated that such a network is able to
polychronize, i.e., neurons spontaneously self-organize into
groups and generate patterns of stereotypical polychronous
activity [12]. Accordingly, the SNAN and SNN performances
were evaluated in terms of number of polychronous groups
generated by the network.

Starting from the TLM vision of dressed neuron, section
II reports on the implementation of the spiking neuron-
astrocyte network. Experimental results are reported in sec-
tion III pointing out that the inclusion of astrocyte sig-
nificantly improves the network performances in terms of
number of polychronous groups.

Fig. 1. Graphical representation of the dressed neuron as a nonlinear
bipolar junction transistor [6]
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II. MATERIALS AND METHODS

The tripartite synapse involves a pre-synaptic neuron, a
post-synaptic neuron, and an astrocyte. Such a unit, called
dressed neuron, is the fundamental part of the SNAN im-
plementation and is comprised of a pre-synaptic neuron, an
astrocyte, and a post-synaptic neuron whose currents are
linked by the following physiologically plausible [6], [13],
[14] relationship:

Ipn(t) = Iastro(t) + In(t) (1)

where Ipn(t) is the post-synaptic current, In(t) is the pre-
synaptic current, and Iastro(t) is the astrocyte current.

The proposed SNAN includes the Iastro(t) representation
through the TLM and a specific learning rule for produc-
tion rate of inositol 1,4,5-trisphosphate (rIP3) along with
axonal conduction delays and STDP learning rule of synaptic
weights. Therefore, the standard SNN can be seen as an
SNAN with Iastro(t) = 0, ∀t

A. Neuron-Astrocyte Transistor-Like Model

Since the TLM has been extensively described in [6],
this paragraph reports on the basic equations useful for
the SNAN implementation. The TLM concept of neuron-
astrocyte interaction is shown in Fig. 1.

It has been demonstrated that Iastro(t) can exhibit differ-
ent dynamics according to a specific combination of the In(t)
and rIP3 [6]. Specifically, three behaviors are identified in
the In − rIP3 orthogonal plane defining the so-called Zone
0, Zone 1, or Zone 2. Each zone represents a specific region
of the plane bounded by the following threshold curves:{

Ith1
= z1 · n1

√
rIP3 − p1

Ith2
= z2 · n2

√
rIP3 − p2

(2)

where zi, ni, and pi are fitting parameters [6].
In Zone 0, the Iastro(t) = 0 since the IP3 concentration is

not large enough to induce the necessary calcium oscillations.
In Zone 1, the IP3 concentration induces periodic calcium
oscillation such that Iastro(t) dynamics is a positive rectified
sinusoidal wave with variable delay between the start of the
input current and the Iastro(t) firing. In Zone 2, Iastro(t)
exhibits an overshoot and decaying oscillations approaching
the final value, just like an underdamped second order
system. Also in this case, a variable delay between the start
of the input current and the Iastro(t) firing is induced.

Mathematically, it is possible to write the nonlinear trans-
fer function of the tripartite synapse, hsyn, for each zone as
follows:

hsyn(t) =



0
if In(t) ≤ Ith1

Θ(t−D1) ·A1 · sin(H)
if Ith1

< In(t) ≤ Ith2

Θ(t−D2) · I
∗
astro+A2·e−

t
τ ·sin(2πf ·t)

In
if In(t) > Ith2

(3)

where t is the time expressed in ms, Θ is the Heaviside
function, and H is a triangular periodic waveform [6].

Then, the Iastro is defined as:

Iastro(t) = In(t) · hsyn(t) (4)

B. Neuron-astrocyte TLM network Implementation

The RS and FS models of neuron were used for the SNAN
implementation. This choice is justified by the fact that they
are the major class of excitatory and inhibitory neurons in
the neocortex.

Considering the Izhikevich model of neuron [11] and eq. 1,
the dynamics of a general post-synaptic neuron is as follows:{

v′ = 0.04v2 + 5v + 140− u+ In + Iastro
u′ = a(b(v − u)

(5)

with the condition:

if v ≥ vpeak, then
{

v ← c
u← u+ d

(6)

where v represents the membrane potential, u is the
recovery current, and a, b, c and d are related to the neuronal
fit.

Concerning the exogenous input, a random current (ran-
dom thalamic input) was considered [12]. The neural weights
were updated according to the STDP rule [12], i.e., a
weight is increased if the post-synaptic neuron fires after the
pre-synaptic one. Such an increase is equal to A+e

−t/τ+ .
Otherwise, the synaptic weight is decreased of A−e−t/τ− .
Concerning the rIP3, the following updating rule was used:

rIP3(t+) = rIP3(t) + 0.05(rIP3(t)− rIP3(t−)) (7)

Once the neurons and astrocytes parameters are initialized,
the SNAN works with a periodic activity of one minute in
which pure neural and neuron-astrocyte activity are switched
each 30 s (see Fig. 2). During the first 30 s, in fact, the neural
activity only is evaluated each millisecond giving an external
input current In0 randomly given to each neuron. The other
network parameters are updated each second according to
the STDP rule. Then, during the next 30 s, the Iastro is also
evaluated for each astrocyte according to eq. 4.

Fig. 2. Timing of the SNAN. The neural and neuron-astrocyte activities
alternate each 30s.

Since a generic post-synaptic neuron has multiple pre-
synaptic connections, between pure neural or tripartite
synapses, each ith post-synaptic current is calculated as
follows:
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Iipn(t) =

Ma∑
j=1

In0I
j
astro(t)/Iastromax︸ ︷︷ ︸
Astrocyte

+

Mn∑
j=1

Ijn(t)︸ ︷︷ ︸
Neuron

(8)

where Ma and Mn are the fixed numbers of astrocyte and
neural connections, respectively, and Iastromax is maximum
value of Iastro related to the Zones 1 and 2.

As performance quantifier, the number of polychronous
groups generated by the SNAN was evaluated. It has been
demonstrated, in fact, that spiking neural networks comprised
of RS and FS neurons with axonal conduction delays and
STDP updating rule are able to polychronize [12]. Therefore,
for each post-synaptic, such an evaluation was performed
considering the spiking activity of several combinations of
its pre-synaptic neurons [12].

III. SIMULATION SETUP AND RESULTS

We simulated a SNN of 1000 neurons having the first 800
of excitatory RS type, and the remaining 200 of inhibitory
FS type. The ratio is taken according to the mammalian
neocortex anatomy [12]. Each excitatory neuron is connected
to Mn = 100 random neurons whereas each inhibitory
neuron is connected to Mn = 100 excitatory neurons only.
Inhibitory weights are not plastic, whereas excitatory weights
are updated according to the STDP rule. Each synaptic
connection has a fixed integer conduction delay between 1
ms and 20ms.

Then, we simulated a SNAN having 1000 neurons and
1500 associated astrocytes such that the Neuron-Astrocyte
ratio is 1.5 as in the human neocortex. The SNAN archi-
tecture is similar to the SNN one with Ma ∈ {1, 2} and
Mn = 100 for each neuron. Such an Ma value ensures that
at least one astrocyte is connected to each neuron, i.e., all
SNAN synapses are tripartite synapsis. The Iastro(t) was
computed using the TLM with all the initial rIP3 = 0.3
and Iastromax = A1 when an astrocyte is in Zone 1 whereas
Iastromax = Ifin+A2 in Zone 2. The variables A1, A2, and
Ifin are derived from the TLM computation [6].

Both SNAN and SNN neural parameters were initialized
with values found in the literature. Specifically, the exci-
tatory and inhibitory neural weights were set to 6 and -5,
respectively [12], and updated each ms. The exogenous input
current was set In0

= 20 pA randomly given to each neuron.
The STDP parameters were τ+ = τ− = 20ms, A+ = 0.1,
and A+ = 0.12 [12]. The model parameters for the RS
neurons were a = 0.02, b = 0.2, c = −65, and d = 8. The
FS parameters were the same for b and c but with a = 0.1
and d = 2.

The software implementing the SNN and calculus of poly-
chronous groups was found on-line in [15]. Both SNAN and
SNN were simulated for 24 hours with a time resolution of
1ms. The number of polychronous groups generated by both
networks were evaluated after three, six, twelve, eighteen,
and twenty-four hours. Results are shown in Fig. 3. It is

straightforward to notice that the SNAN always generate
higher number of polychronous groups.
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Fig. 3. Comparison, in terms of number of polychronous groups, of the
network implementations. The SNAN performances are reported with the
red continuous line and circles. The SNN performances are reported with
the blue dashed line and squares.

Representative seconds of neural activity, independently
captured after 1 hour and 4 hours of simulation, are shown
in Figs. 4 and 5. We report that the theta and gamma rhythms
found in the SNN during the first seconds of simulation are
present also in the SNAN.
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Fig. 4. Representative spiking activities within a second of a SNAN (top)
and SNN (bottom) after 1hour of simulation.
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Fig. 5. Representative spiking activities within a second of a SNAN (top)
and SNN (bottom) after 4 hours of simulation.

IV. CONCLUSIONS

In this pioneering work, a novel and efficient implemen-
tation of Spiking Neuron-Astrocyte Network (SNAN) was
presented. It is constituted by RS and FS neurons, modeled
as the Izhikevich formulation, which interact with astrocytes
according to a tripartite view of synapsis. Astrocytes con-
tribution in the network is intended as post-synaptic current
whose dynamics is modeled using our previously proposed
nonlinear transistor-like formulation. As the neurons and
astrocytes present different time scales (neuron [ms]; astro-
cyte [s]), the SNAN dynamics switch between pure neural
and neuron-astrocyte activity each 30s. We demonstrated
that our idea of SNAN is able to generate a significant
number of neural groups that spontaneously generate patterns
of polychronous activity. Such performances improve the
current state of the art, which is constituted by standard
spiking neural network (SNN) [12].

As the polychronous neural activity has been associated
to the representation of memories of the network [12],
we speculate that the proposed SNAN improves such a
memory representation improving the bio-inspired computer
model of the human brain. Moreover, since it has been
demonstrated that SNN are able to also represent coherent
external stimuli (intended as deterministic input currents)
as polychronized groups, the proposed SNAN could open
new dramatic perspectives in other fields such as artificial
intelligence for pattern recognition. Finally, the efficient
computational formulation of dressed neuron as TLM allows
also for an easiest hardware implementation of neuron-

astrocyte networks.
Future works will progress to the comparison of SNAN

and SNN implementations with different number of neurons
as well as further learning rules developed ad-hoc for the
continuous co-existing dynamics of neurons and astrocytes.
Moreover, sensitivity analyses of important model parame-
ters such as the fixed integral conduction delay of synaptic
connection, the number of neurons and astrocytes along with
their ratio will be performed.
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