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Abstract— We propose a multi-atlas labeling method for
subcortical structures and cerebral vascular territories in brain
CT images. Each atlas image is registered to the query image
by a non-rigid registration and the deformation is then applied
to the labeling of the atlas image to obtain the labeling of the
query image. Four label fusion strategies (single atlas, most
similar atlas, major voting, and STAPLE) were compared.
Image similarity values in non-rigid registration were calculated
and used to select and rank atlases. Major voting fusion strategy
gave the best accuracy, with DSC (Dice similarity coefficient)
around 0.85 ± 0.03 for caudate, putamen, and thalamus. The
experimental results also show that fusing more atlases does
not necessarily yield higher accuracy and we should be able to
improve accuracy and decrease computation cost at the same
time by selecting a preferred set with the minimum number of
atlases.

I. INTRODUCTION

Brain CT (computed tomography) imaging plays an essen-

tial role in clinical diseases diagnosis with the advantages

of quantitative measurements, short imaging time, ease of

access, high resolution of bony detail, and detection of

hemorrhage. Therefore CT is the method of choice especially

in stroke perfusion imaging. Detection of the morphological

signatures in brain CT images provides useful diagnostic

information for brain diseases. For example, interruption in

the blood supply to a certain area of the brain will cause the

ischaemia, infarction and eventual necrosis of tissue. These

changes can be interpreted and localized from CT image for

early diagnosis. The quantitative analysis of brain CT images

usually benefits from labeling of subcortical structures and

vascular territories. Reliable and accurate CT labeling of

vascular territories can help localize brain lesion and detect

cerebral infarction. For instance, the Alberta Stroke Program

Early CT Score (ASPECT) was proposed as a 10-point

quantitative topographic CT scan score used in patients with

middle cerebral artery (MCA) stoke, therefore the segmental

assessment of MCA territory will help the diagnosis [1].

Unlike brain MRI labeling which has rich literature, there

are only a few studies on labeling of subcortical structures

and vascular territories for brain CT data. Maldjian et al [2]

presented an atlas-based automated method for identifying
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potential areas (lentiform nucleus, internal capsule, and

insula) of acute ischemia on CT scans. Their approach

can be extended to other anatomical regions and vascular

territories using image registration and multi-atlas labeling

approach proposed in this paper. Rutczyńska et al [3] pre-

sented structures segmentation from brain CT by employing

adaptive filtering, Gaussian mixture modeling and context-

based enhancement. Their approach was claimed better than

region growing segmentation results.

Fig. 1. Processing Pipeline of the Atlas-based Image Labeling.

Atlas-based labeling is a commonly used technique to

segment the query image by propagating labels from the atlas

with image registration. An atlas is defined as the pairing

of an original CT scan and a corresponding “ground truth”

labeling. When a moving image (the atlas) is registered non-

rigidly to a fixed image (the query image), the calculated

transformation is used to propagate the labels from the atlas

to the space of the query image. The labeling accuracy can be

improved considerably by multi-atlas labeling with different

label fusion methods [4]. Usually multi-atlas method has bet-

ter accuracy than single atlas.However, the major drawback

of multi-atlas segmentation is its expensive computation cost.

The objective of this study is to develop a multi-atlas la-

beling approach for brain subcortical structures and vascular

territories for clinical use. Several label fusion strategies are

compared. The labeling accuracy is reported as Dice similari-

ty coefficient and Hausdorff distance. Image similarity values

in non-rigid registration are calculated and the information

helps select the preferred atlas. The change in labeling
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accuracy versus atlas number is analyzed. The subcortical

structures labeling shows good accuracy and demonstrates

the potential use of multi-atlas labeling for brain vascular

territories.

II. METHODS

A. Atlas-based Labeling for Brain CT Images

Figure 1 shows the processing pipeline in this study. With

the deformation field from registrations between atlases and

query image, subcortical structures and vascular territories

labels are warped and fused to finally label the query image.

Image registration performs the task of finding a spatial

transformation from the atlas to the query image. Before

registration, all images were preprocessed to remove the

skull bone using thresholding and voxel connection. Rigid

registration is firstly applied to the entire brain area to

place the images in global spatial alignment. Scaling is

also optimized with the rigid registration parameters to

compensate inter-subject size variation. The classification

of a query image using the atlas can be done by finding

the transformation such that Lsub = Φi ∗ Ii. In this study,

we acquire this transformation by a diffeomorphic non-rigid

registration using a variational approach [5].

B. Multi-atlas Label Fusion Strategies

Labeling from multiple atlases can be fused to provide a

consensus labeling estimate for the query image. The multi-

atlas approach reduces the effect of errors associated with

an individual atlas, such as registration error and anatomy

variability. The fusion of labels is at the voxel level and can

be achieved in different strategies. Table I summarizes the

four label fusion strategies that are analyzed in this study -

SINGLE, SIMILAR, MV, and STAPLE [4].

Label Fusion Description

SINGLE
One of the atlases with ground truth labels is chosen
to serve as an individual atlas

SIMILAR
One of the atlases with minimum SSD between atlas
and query image is chosen to serve as the atlas

MV
All atlases except the query image from the database
are used by “major voting” label fusion strategy

STAPLE
All atlases except the query image from the database
are used by STAPLE label fusion strategy [4]

TABLE I

SUMMARY OF FOUR LABEL FUSION STRATEGIES.

In SIMILAR strategy image similarity between the atlas

and query image is calculated to select the preferred atlas.

As shown in figure 1, to help select the most similar atlas,

the sum of squared difference (SSD) is computed in a fixed

ROI for each pair of registration after registration as an

estimate of image similarity. The ROI is defined as the

minimum bounding box in the query image (target image in

registration) that contains all subcortical structures analyzed

in this paper - caudate, putamen, thalamus, and internal

capsule. Then the most similar atlas with the smallest SSD

criterion is selected.

In majority voting (MV) strategy, the final label assigned

to a voxel is decided by “majority vote” from all propagated

labels. The STAPLE approach presented by Warfield et

al [4] uses expectation maximization to iterate between the

estimation of true consensus segmentation and the estimation

of reliability parameters for each rater. The reliability pa-

rameters are based on the sensitivity and specificity of each

rater and are then used to weigh their contributions when

generating the final consensus estimate.

C. Validation

The labeling is tested by measuring the agreement between

ground truth and the segmentation produced by atlases. Dice

similarity coefficient (DSC) is a commonly used validation

method that measures the overlapping intersection divided by

the mean volume of the two regions [6]. Another validation

metric used in this paper is Hausdorff distance (HD), which

calculates the maximum distance between two point sets in

3D surfaces [7].

III. EXPERIMENTAL RESULTS

The algorithm was tested by 18 brain perfusion dynamic

CT scans from 18 clinical patients (age: 43 - 84 years old).

Each dynamic CT scan consists of a volume series acquired

over time using Siemens Adaptive 4D Spiral Scan (A4DS)

technique. The number of slices for each CT volume ranges

from 13 to 95, with slice spacing ranging from 1 mm to

5 mm. The dimension of each CT images is 512 × 512,

with pixel spacing ranging from 0.33 mm to 1 mm. The

field of view (FOV) on head-foot direction ranges from 65

mm to 90 mm, with different brain coverage. As different

institutions used different scanning protocols to acquire the

data, in addition to the brain coverage, the head position,

especially the rotation about left-right axis, also varies.

The input data for vessel territory labeling was created

from the dynamic CT data by averaging intensity over time

for each voxel. The skulls in the average images were then

removed before registration to avoid influence of topological

skull change from craniotomy. The intensity averaging and

skull removal were performed by a software application

(syngo.Volume Perfusion CT Neuro) installed in Siemen

CT scanners. The averaged perfusion images were manually

labeled for subcortical structures and vascular territories and

then used as the atlas labeling for our method. Leave-one-

out cross-validation approach was used for validation. In

this approach the manual labeling for the query subject was

treated as the ground truth, and the remaining subjects were

used as the atlases.

If single atlas was used, the average computation time

is 34 seconds with Intel(R) Xeon (R) CPU 2.27 GHz (2

processors) Quad Core, 12.0 GB RAM. The computation

speed and good labeling accuracy demonstrate potential use

for a practical solution.

Figure 2 shows the labels for one subject in 3D view. Sub-

cortical structures are shown on the left. Vascular territories
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Fig. 2. 3D view of the labeling for subcortical structures (left) and vascular
territory (right).

Fig. 3. (a) Manually labeled subcortical structures in atlas image. (b)
Manually labeled vascular territories in atlas image. (c) Atlas-based labeling
of subcortical structures in query image. (d) Atlas-based labeling of vascular
territories in query image.

are shown on the right where green is anterior cerebral artery

(ACA), blue and yellow are superior and inferior middle

cerebral artery (MCA), and red is posterior cerebral artery

(PCA). Figure 3 shows subcortical structures and vascular

territories labels in a sample atlas and warped labels in a

sample query subject using SINGLE atlas fusion approach.

Figure 4 shows the box plots for DSC between the

ground truth and the fused labels for different subcortical

structures with four different label fusion strategies. Each

query subjects has 17 warped labels from SINGLE atlas

strategy. Among the four subcortical structures, the DSC for

internal capsule is the worst. The ground truth labeling of

internal capsule was obtained by using the other subcortical

structures and therefore all the manual labeling errors were

accumulated here. However, this can be improved using a

better atlas. For the four atlas fusion strategies, MV achieved

the best labeling accuracy. SIMILAR label fusion strategy

is better than SINGLE, while surprisingly the STAPLE

approach is also worse than MV and sometimes even worse

than SIMILAR.

Table III summarizes the labeling accuracy (mean ±

standard deviation) for different label fusion strategies for

all subcortical structures. Each label is tested through two

metrics - DSC and Hausdorff Distance (HD). MV achieves

best performance as around 0.85 DSC and less than 6 mm

HD.

Figure 5 shows the labeling accuracy of subcortical struc-

ture putamen for each query subject. In the leave-one-out

cross-validation, black circles dots represent DSC values

from SINGLE atlas, red stars represents MV fusion with all

17 atlas, and blue square represents the STAPLE strategy. We

can see the MV fusion method performs better than SINGLE
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Fig. 4. Dice coefficients of subcortical structures labeling using SINGLE,
SIMILAR, MV, and STAPLE label fusion strategies.
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Fig. 5. DSC values of the subcortical structure putamen for each query
subject, with label fusion strategy of SINGLE, MV, and STAPLE.

and STAPLE for each query subject.

Figure 6 shows the change of DSC for subcortical struc-

tures labeling using MV, with increasing numbers of fused

atlases. The atlas were ranked by the SSD criterion within

the bounding box. The vertical axis shows mean DSC and the

horizontal axis shows number of fused atlas. For example,

only one atlas that has minimum SSD criterion is selected

if the “Atlas number” is 1, and more atlases are added in

sequence with increasing “Atlas number”. We can see more

atlases would not necessarily achieve better accuracy after

certain threshold. The DSC values becomes to remain stable

when the atlas number is greater than five.
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Caudate Putamen Thalamus Internal Capsule

SINGLE
DSC 0.71 ± 0.058 0.72 ± 0.049 0.74 ± 0.033 0.53 ± 0.050

HD (mm) 6.7 ± 2.9 10.2 ± 4.0 9.1 ± 1.4 16.5 ± 1.3

SIMILAR
DSC 0.79 ± 0.059 0.78 ± 0.051 0.79 ± 0.026 0.58 ± 0.069

HD (mm) 5.0 ± 3.2 7.6 ± 4.6 8.0 ± 1.4 15.5 ± 3.5

MV
DSC 0.85 ± 0.032 0.84 ± 0.035 0.85 ± 0.030 0.69 ± 0.056

HD (mm) 3.7 ± 2.9 6.0 ± 3.9 5.9 ± 1.4 20.3 ± 5.5

STAPLE
DSC 0.76 ± 0.066 0.75 ± 0.047 0.80 ± 0.042 0.49 ± 0.123

HD (mm) 5.2 ± 3.7 8.0 ± 4.9 6.8 ± 1.3 17.0 ± 3.3

TABLE II

SUMMARY TABLE OF LABELING ACCURACY (MEAN ± STANDARD DEVIATION) FOR DIFFERENT

LABEL FUSION STRATEGIES FOR ALL SUBCORTICAL STRUCTURES.
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Fig. 6. Dice coefficients of subcortical structures labeling using major
voting, with increasing numbers of combining atlas. The atlas were sorted
by SSD criterion within the bounding box.

IV. DISCUSSION

The experimental results show DSC is around 0.85 ±

0.03 for caudate, putamen, and thalamus, which rivals the

DSC results of atlas-based segmentation from brain MR

images [8], [9]. This result demonstrates that using our

atlas-based labeling technique, brain CT images would also

achieve similar segmentation accuracy as MR images and

thus provide useful tissue information for clinical diagnosis.

The accurate labeling of subcortical structures also demon-

strates it is feasible to use atlas-based segmentation upon

brain vascular territories, which is more difficult to validate.

For all the four label fusion strategies, both DSC and HD

suggest the accuracy of internal capsule is worse than the

other subcortical structures. This might be explained by the

curved shape of internal capsule, which may impede the

label fusion from multiple atlases because label fusion is

more susceptible to registration errors. The same finding was

reported in atlas-based brain MRI segmentation [8].

Moreover, the labeling accuracy is directly related with

the credence of ground truth labeling in atlases. Since our

study in this paper is only focused on testing the proposed

labeling method, better annotation for the atlas in our future

work should improve the results, including internal capsule.

We compared the four atlas fusion strategies. Figure 4, 5,

and table III show MV, SIMILAR, and STAPLE all exceed

SINGLE strategy, in which MV achieves best accuracy

and STAPLE even yields worse DSC values than MV and

SIMILAR. This result can be supported from [9] which

also reported unexpected worse STAPLE accuracy. As the

conjectures of reason in [9], STAPLE may yield high recog-

nition rate but not good DSC or HD numbers. Moreover, the

performance of STAPLE may vary on different image data

set with different priori probabilities.

We investigated the change of labeling accuracy with

increasing number of involved atlases. Figure 6 shows if the

number of atlas is less than five, labeling accuracy improves

with increasing number of atlases. However, the accuracy

almost remains unchanged when number of atlas is more

than five. Incidentally in [8] it also reported that no increase

or even decrease in the accuracy was obtained when the atlas

number exceeds certain limit. This result inspires us that for

the time-consuming issue, the preferred selection of a limited

number of atlases would always appear preferable to using

the whole atlas population especially in case of arbitrarily

large atlas database.

V. CONCLUSION

In this paper, we proposed a multi-atlas labeling approach

for subcortical structures and vascular territories in brain CT

images. The labeling accuracy of subcortical structures in

CT images rivals that of MR images and demonstrates the

potential use of labeling for vascular territories in brain CT

images. For future work, better accuracy may be achieved by

improving labeling of the atlas. Four atlas label fusion strate-

gies (SINGLE, SIMILAR, MV, STAPLE) are compared, in

which MV shows the best accuracy. This result shows that

an preferred atlas selection method can be used in future

work to improve accuracy and computational efficiency at

the same time.
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