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ABSTRACT 

 

Resting-state functional connectivity between 

neuroanatomical regions has attracted significant attention 

in recent years. In the process of obtaining the resting-state 

functional connectivity map of the human brain from blood-

oxygen-level-dependent fMRI signals, it is common to 

average the signals from left and right hemispheres. This 

averaging can introduce unappreciated complexities and 

unintended consequences not related to the research 

question of interest. In this paper, we mathematically 

demonstrate that measures of functional connectivity 

obtained by averaging homologous regions from the both 

hemispheres become undesirably dependent on four inter-

hemispheric connectivity measures. We explore this finding 

in real-world fMRI data from 25 healthy young participants. 

We show that inter-hemispheric averaging has a mixed 

effect on the results and may introduce correlation artifacts 

to the connectivity map. Furthermore, we show 

mathematically and demonstrate with Monte Carlo 

simulations of null data that inter-hemispheric averaging 

will not alter human brain connectivity map at rest only and 

if only there are no inter-hemispheric correlations. 

 

Index Terms— fMRI, Resting BOLD, Brain, 

Functional Connectivity 

 

1. INTRODUCTION 

 

Recent advances in functional Neuroimaging technology 

have revealed that spontaneous low-frequency (<0.1 Hz) 

fluctuations in the resting-state fMRI signal are correlated 

between areas believed to be functionally related [1]. Strong 

homologous-region inter-hemispheric functional 

connectivity is reported in animal and human brains with a 

variety of non-neuroimaging tools [2]. Neuroimaging 

findings also present strong homologous-region inter-

hemispheric correlations [1], [3], often interpreted as inter-

hemispheric synchrony. Based on this interpretation, inter-

hemispheric averaging of the resting-state fMRI signals, 

especially for lateralized regions (i.e. Lateral Parietal, Supra 

Marginal, and etc), has become a common practice in the 

field of Neuroimaging [4–6]. Averaging is further justified 

because it can increase statistical power for detecting 

functional connectivity, and it circumvents issues associated 

with lack of localization accuracy in regions close to the 

medial plane (i.e. Posterior Cingulate). In fact, when regions 

are identified using seed locations these seeds are often 

placed exactly on the medial plane to cover both 

hemispheres which makes the segregation of the two 

hemispheres impossible.   

In this paper, we first mathematically examine the effects 

of inter-hemispheric averaging on the functional 

connectivity map of the brain at rest. We then validate the 

mathematical findings with simulations and with resting 

state fMRI data from 25 healthy young participants.  

 

2. ARITHMATIC AVERAGING 

 

In this section we illustrate the mathematical relationship 

between the correlation coefficients of two pairs of regional 

signals and their correlation coefficient after pair-wise inter-

hemispheric averaging. Fig. 1 shows two sample pairs of 

regions (Inferior Parietal        , and Superior Frontal 

       ) on the right and left hemispheres overlaid on a 

sample MRI image. In neuroscience research we are often 

interested in studying intra-hemispheric functional 

connectivity (correlations:       
,       

) while being aware of 

strong homologous-region inter-hemispheric functional 

connectivity (Correlations:       
,       

). However, there is 

also cross-region inter-hemispheric functional connectivity 

(correlations:       
,       

), which is often paid less attention 

in this field. Thus there are two intra and four inter-

hemispheric functional connectivities that can be computed 

between two pairs of regions in both hemispheres. The goal 

of this section is to demonstrate the mathematical 

relationship between the functional connectivity after inter-

hemispheric averaging,                 
1 and the six 

aforementioned inter and intra-hemispheric functional 

connectivities. If we define         ,        , then 

correlation of two averaged signals is: 
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1
 Correlation coefficients are independent of the signal 

scale, thus the correlation coefficient between summed 

signals is the same as correlation coefficient of the averaged 

signals,                            ⁄            ⁄  . 
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where      is the correlation coefficient between the signals 

a and b ,   
  is the variance of signal a, and      is the 

covariance of signals a and b. Equation (1) demonstrates 

that the correlation between averaged signals is not only a 

function of intra-hemispheric correlations, but also depends 

on homologous and cross-region inter-hemispheric 

correlations. Most striking is the denominator: since it is 

only a function of the homologous inter-hemispheric 

connectivities and increases for positive values, which 

makes the overall connectivity of averaged signals smaller, 

against conventional wisdom. When the homologous-

regions inter-hemispheric correlation is very high,       
 

      
  , the averaged signals correlation become equal to: 
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Lambdas are the weighting factors in the range of [0,1) that 

control the influence of each of the four correlations in 

equation (2) and              . As it seen in this 

equation, the cross-region inter-hemispheric correlations 

(      
        

) are as important as the intra-hemispheric 

correlations (      
        

) in the computation of the 

correlation between the averaged signals. Next we examine 

a case in which no homologous-regions inter-hemispheric 

correlations exist (      
       

  ). Surprisingly, equation 

(2) still holds for this special case as well, with differences 

only in the normalization factor    Therefore, in the absence 

of homologous inter-hemispheric dependency    
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Again Lambdas are the weighting factors in the range of 

[0,1) that control the influence of each of the four 

correlations in equation (3) and    
     

     
     

   . 

Since      √     , then     , and eventually 

     
               . This result shows that stronger 

homologous inter-hemispheric correlations make the 

correlation of averaged signals weaker. This is at first 

surprising because averaging is often justified on the 

grounds that high homologous inter-hemispheric functional 

connectivity increases the signal-to-noise ratio of the 

averaged signal. On the other hand, cross-region inter-

hemispheric correlations differently affect the averaged 

signals correlation depending on the sign of the correlations. 

However, we will show in the next section that inter-

hemispheric correlations are often highly positive and 

negative cases are rare or extremely small. In that case, one 

can conclude; the effect of homologous and cross-region 

inter-hemispheric correlations on the averaged signals 

correlation is opposite. While an increase in homologous 

correlations cause reductions in the average signal 

correlation, the increase in cross-region inter-hemispheric 

correlations causes the averaged signals correlation to 

increase. 

Finally, if one normalizes the temporal signals to zero 

mean and unit variance, meaning    
    

    
    

  , 

it is easy to show that       ,    
                   . 

Therefore the correlation of averaged signals is equal to the 

average of two corresponding intra-hemispheric correlations 

only when all four inter-hemispheric correlations are zero 

(      
       

       
       

  ). In the next section, we 

show that this is not the case in real data. Thus inter-

hemispheric averaging can both increase or reduce the 

correlation magnitude.  

 

3. EXPERIMENTAL RESULTS 

 

In this section, we use real and simulated fMRI data to 

validate the findings in the previous section. We start with a 

small dataset of resting BOLD fMRI data and then perform 

a Monte Carlo simulation of null data. 

 

3.1. fMRI Data Examination 

 

The prevailing method of fMRI data analysis has poor 

localization accuracy due to its spatial normalization and 

smoothing steps. Analyzing fMRI data in a subject’s native 

space instead gives the highest level of localization 

accuracy. Native space analysis circumvents the necessity of 

spatial normalization and smoothing by assigning a single 

temporal signal to each neuroanatomical region in the brain. 

This makes the computation of inter-regional correlations 

much easier where at the same time maximizes localization 

accuracy. 

In this study we only consider ten neuroanatomical 

regions that have repeatedly been reported to be part of 

human brain default network. These regions and their 

 
Fig. 1. Illustration of all six different correlations involved 

when inter-hemispheric averaging preformed. 
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abbreviation are: Hippocampus (Hi), Entorhinal (En), 

Inferior-Parietal (IP), Isthmus-Cingulate (IC), Medial-

Orbito-Frontal (MOF), Para-Hippocampal (PHi), Posterior-

Cingulate (PoC), Pre-Cuneus (PCu), Superior-Frontal (SF), 

Supra-Marginal (SM). Please note that any region can be 

selected for this analysis, as the primary aim of this paper is 

not to detect the human brain default network. 

 

3.2.1. Subject’s Data and Acquisition  

We used a small pilot dataset to examine the effect of inter-

hemispheric averaging on resting-state functional 

connectivity map. Twenty five young and healthy 

participants (11 M, 14 F, mean age: 25.4 Y, STD age: 2.74 

Y) were recruited through a random market mailing from 

within 10 miles of the Columbia University Medical Center. 

Participants were screened to exclude individuals with a 

history of neurologic or psychiatric conditions and those 

using psychoactive medications.  

Structural images were acquired using a 3.0 Tesla 

magnetic resonance scanner (Philips). The structural image 

obtained with T1-weighted turbo field echo sequence with 

TE/TR = 2.98ms/6.57ms; flip angle = 8 degrees; 256x256 

matrix; in-plane voxel size = 1.0 mm x1.0 mm; slice 

thickness = 1.0mm (no gap), and 165 slices. Functional 

images were acquired using the same scanner with a field 

echo echo-planar imaging (FE-EPI) sequence (TE/TR = 

20ms/2000ms; flip angle = 72 degrees; 112x112 matrix; in-

plane voxel size = 2.0 mm x 2.0 mm; slice thickness = 3.0 

mm (no gap); 37 transverse slices per volume), and 6:1 

Philips interleaved, in ascending order. Participants were 

scanned for 9.5 minutes, with instructions to rest and to keep 

their eyes open for the duration of the scan; and not to think 

of any one thing in particular and not to fall asleep.  

 

3.2.2. fMRI Localization and Preprocessing 

The structural T1 images were segmented and parcellated 

using FreeSurfer software [7]. The regional masks were 

transferred to the subject’s fMRI space using FSL rigid 

body registration tool, flirt [8] and used to generate a single 

temporal signal for each region by spatial averaging of the 

voxels at each time point. 

The 6:1 slice interleaving of Philips scanner was 

corrected using Sinc interpolation. As is reported in recent 

publications, resting bold signals are extremely sensitive to 

motion [9], so additional processes of motion removal have 

been taken into account here. First, we used mcflirt to 

register all the volumes to a reference image (averaged 

fMRI image). Second, we used the method described in [10] 

to create frame-wise displacement (FD) and root mean 

square differences (RMSD) of the bold percentage signal. 

Third, the contaminated volumes were detected (FD>0.5mm 

or RMSD>0.3%) and replaced with the new volumes 

generated by linear interpolation of adjacent volumes. 

Volume replacements were done before band-pass filtering 

[11]. Finally, we residualized the temporal signals by 

regressing out the FD, White Matter and Ventricles signals. 

The motion corrected signals were band-pass filtered 

with cut off frequencies of 0.01 and 0.08 Hz using the tool 

flsmaths –bptf. After filtering, the first 10 volumes were 

discarded due to the initial lag of the FIR filter. Next we 

computed the inter-regional correlation by masking out the 

contaminated volumes due to motions (FD>0.5mm or 

RMSD>0.3%) [10]. The mean correlation values are plotted 

as a cross-correlogram of Fig. 2 (upper triangular). The 

upper triangular in Fig. 2 is divided into three sections by 

two white lines. The section on the left/right gives the intra-

hemispheric correlations in the left/right hemisphere, and 

the middle section gives the inter-hemispheric correlations. 

From the middle section it is evident that homologous-

regions have the strongest correlations. However, the cross-

region inter-hemispheric correlations are also as strong as 

the intra-hemispheric correlations.        

Next, we averaged the signals from the corresponding 

left and right hemisphere regions and plot their correlation 

values in a separate cross-correlogram in Fig. 2 (lower 

triangular). As seen in Fig. 2, inter-hemispheric averaging 

generates a different set of results. In many cases, the 

correlation magnitudes increase, which was shown to be 

indicative of significantly high cross-region inter-

hemispheric correlations. In other cases, averaging reduces 

the correlation, which is the result of a strong inter-

hemispheric correlation for the corresponding regions. 

These results clearly show that averaging has a mixed and 

surprisingly complex effect on the final correlation map, as 

seen in Fig. 2. This finding is in contrast to the commonly 

held belief that strong inter-hemispheric correlations justify 

inter-hemispheric averaging and call for greater nuance.  In 

the next subsection we show that only in the absence of 

inter-hemispheric correlations, averaging does not change 

the distribution of the induced correlations. 

Fig. 2. Cross-Correlogram of the default network before 

and after inter-hemispheric averaging in upper and lower 

triangular, respectively. 
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3.2. Monte Carlo Simulation 

 

We generated 10
4
 sequences of Gaussian random numbers 

(mean=0, std=1), all with equal length of 285 points (this is 

the same length as our real data). Then we computed every 

possible pair-wise correlation within the generated 

sequences. Next, we band-pass filtered these signals (with 

the same filter used in real data) and recomputed all pair-

wise correlations. Fig. 3 shows the distributions of all 

possible pair-wise correlations before (blue) and after (red) 

band-pass filtering. As demonstrated, the temporal band-

pass filtering induces correlations up to 0.5. Even without 

filtering, purely random signals can generate correlations up 

to 0.2. This simulation shows that for a pair of limited 

length filtered random signals (285 points), the probability 

of generating non-zero correlations is significantly high, 

which violates any zero correlation assumptions.   

Finally, we examined the effect of random signal 

averaging on the final distribution of the pair-wise 

correlations. We randomly averaged half of the 10
4 

random 

sequences with the other half yielding 5,000 new random 

sequences. Distribution of all of their possible pair-wised 

correlations is shown in Fig. 3 by black dashed line curve. 

As the figure shows, averaging does not introduce any extra 

correlations. This clearly validates the results of inter-

hemispheric independence, meaning if the inter-hemispheric 

time-series are independent of one another, averaging will 

not have a significant effect on the distribution of the final 

correlations. 

4. CONCLUSION 

 

The analysis of the current study suggests that the inter-

regional correlation map can be measured by 

hemispherically averaged signals only when there is no 

inter-hemispheric correlation. This result is confirmed with 

Monte Carlo simulations of null data. However, analysis of 

real data shows that there exist strong inter-hemispheric 

correlations in human brain regions. In fact, homologous 

inter-hemispheric correlations are shown to be particularly 

strong (      
       

  ) between certain regions. More 

interesting is the effect that homologous and cross-region 

inter-hemispheric correlations have on the correlation 

between the inter-hemispherically averaged signals: the 

theoretical formula shows that homologous and cross-region 

inter-hemispheric functional connectivity have opposite 

effects; most surprisingly, positive homologous inter-

hemispheric functional connectivity acts to decrease the 

functional connectivity between inter-hemispherically 

averaged signals, in direct contrast to a commonly held view 

in the Neuroimaging community at large. This is also 

confirmed with real data examination. While there are many 

pair-wise correlations which will be increased by inter-

hemispheric averaging, there also exist pairs of regions 

whose functional connectivity is decreased by inter-

hemispheric averaging. Therefore, inter-hemispheric 

averaging of the fMRI signals seems to be problematic and, 

because of the complex and unintended consequences 

demonstrated in this paper, should best be avoided.         
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Fig. 3. Distribution of pair-wise correlation computed for 

Gaussian random sequence of length 280 points, before 

filtering (blue), after filtering (red), after averaging (black)    

6525


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

