35th Annual International Conference of the IEEE EMBS

Osaka, Japan, 3 - 7 July, 2013

On Identification of Sinoatrial Node in Zebrafish Heart Based on
Functional Time Series from Optical Mapping
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Abstract— As a vertebrate cardiovascular model, the ze-
brafish heart has been used extensively in physiology research
to study cardiac development and human cardiac disease.
Optical mapping techniques provide an effective approach to
record action potential propagation in the zebrafish heart.
However, manual analysis of functional time series recorded
from optical mapping can be laborious and time consuming. In
this paper, a novel pipeline is proposed to assist physiologists in
identifying the sinoatrial node (SAN) in zebrafish heart based on
functional time series. First, the original optical mapping data
are enhanced and averaged. Next, the heart is divided into small
regions, and representative average time series are calculated.
A ‘discretization of derivative’ (DoD) process is performed to
model physiological similarity between signals. Finally, group-
ing is done on the DoD transformed representation, which is
found to produce physiologically meaningful classification for
SAN identification.

I. INTRODUCTION

As a vertebrate cardiovascular model, the zebrafish heart
has been used extensively in physiology research to study
cardiac development and human cardiac disease [1]. The
zebrafish heart is comprised of cells of different types,
including nodal, atrial and ventricular cells. Each of these cell
types has distinct mechanical and electrical characteristics
that determine the heart’s ability to provide adequate blood
flow to the rest of the body. Accordingly, each cell type has
a distinct action potential waveform, a specific time series of
membrane depolarization that closely relates to its physiolog-
ical function. The action potential waveform can be recorded
by optical mapping techniques [2], [3], which makes the
electrical activity of the heart visible and enables cell type de-
termination by analyzing the time series of cardiac activation
and membrane depolarization among different individuals
and under various experiment conditions. Figure 1 shows the
optical mapping zebrafish heart image and typical signals.
Identification of sinoatrial node (SAN) cells is of particular
interest since they are responsible for the heart’s intrinsic rate
and respond to extrinsic factors that modulate heart rate [4].
Recently, functional pacemaker of adult zebrafish heart has
been identified as a ring around the venous pole [5] based
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(a) Optical mapping image (b) Typical signals
Fig. 1. Optical mapping zebrafish heart image and typical signals: (a)
labelled optical mapping image zebrafish image, (b) plots of typical atria
and ventricle signals from bounding boxes in (a).

on a complex combination of microscopic examination,
gene expression pattern reconstruction, reporter transgenics
and electrophysiology. However, this method is complicated,
expensive, time consuming and still needs to be validated by
other equally involved independent methods. On the other
hand, considering that anatomical structure is hard to identify
in optical mapping data due to the tissue transparency, a
simple, cheap and fast method is desired for locating SAN
node in every set of recorded optical mapping data. However,
direct observation of time series from optical mapping data
is difficult due to: 1. SAN cells are small and intermixed
among larger atrial cells and 2. low signal-to-noise ratio and
low intensity range of original optical mapping data. This
makes preprocessing techniques essential even for manual
identification. Furthermore, to enable fast identification of
SAN based on functional time series, automatic analysis
techniques are required. Previous analyses of cardiac optical
mapping, including spatial-temporal filtering, activation map,
conduction velocity and APD maps were reviewed in [6].
SAN was mainly identified as region with early depolariza-
tion from activation map, which is physiologically valid and
applicable with fast cameras. However, when slower cameras
are used as a trade-off for higher spatial resolution, activation
map is less accurate, hence the resulting SAN identification.
The shape of the entire action potential waveform may
provide richer information for SAN identification, especially
in the case of using low frame rate camera. For example,
slow diastolic depolarization slope has been used in manual
identification isolated coronary-perfused human sinus node
from optical mapping data [7].

This paper describes a novel pipeline of automatic data
analysis tools for analyzing functional optical mapping
recordings to locate the SAN and other areas of interest in the
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(c) Action potential (d) Averaged cycle

Fig. 2. Preprocessing illustration: (a) raw signal from single pixel, (b) the
spatial and temporal filtered signal; the green line is the fitted photobleaching
trend, (c) photobleaching is removed, and signal is reversed and scaled, (d)
averaged action potential from multiple cycles.

zebrafish heart. Representative signals from each identified
region can then be used by scientists to investigate aspects of
heart activity under different experimental conditions. This
process will free physiologists from intensive and repetitive
work of manually analyzing and comparing large amount of
functional time series to locate the SAN.

II. METHODS

Zebrafish hearts were isolated and then labelled with the
fluorescent voltage sensitive dye RH-237 [8] by immersion
in 8 uM solution. 10 pM blebbistatin excitation-contraction
uncoupler [9] was used to inhibit contraction and motion arti-
fact. Excitation illumination was provided by a 200 mW 532
nm DPSS laser (Laserglow Technologies). Spectral filtering
was provided by a 560 nm long pass dichroic and a 710
nm long pass emission filter (Omega Optical). Fluorescent
images of the heart were acquired using two GE680 (Allied
Vision Techologies) cameras at a frame rate of 205 fps and
resolution of 640x480, followed by a 4 by 4 binning to
reduce the resolution down to 160x120.

A. Preprocessing

Due to the low signal-to-noise ratio and low intensity
resolution of the original optical mapping data, both spatial
and temporal averaging were done on the original data. Then
the drifting caused by photobleaching of the fluorophore
[10] and other effects was compensated for by first fitting a
quadratic curve [6] to each pixel time series and subtracting
it from original signal followed by scaling to range [0, 1].

After enhancing, the time series waveform for each pixel
in the atrium was taken and divided into constituent ‘cycles’
that make up the waveform, using the peaks of average
atrium waveform. These cycles are then linearly interpolated
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(a) Averaged signals from different clusters

(b) Area classfication on heart

Fig. 3. Result of the first stage of clustering: (a) averaged signals from
each clusters, (b) zebrafish heart with color coded patches labelled. Each
signal in (a) represent the the average in the cluster of the same color in
(b). (b) contains images from anterior and posterior sides.

to have the same length and averaged to get a single averaged
cycle. This averaged cycle for each pixel is henceforth
referred to as ‘signal’ or ‘time series’. This preprocessing
is illustrated in Figure 2.

In order to find the SAN, which is known to initiate
the depolarization wave, the ‘late’ signals, defined as those
that reached their peak value after the average atrial peak,
were removed thereby restricting the processing only to
those pixels in the atrium that depolarize early. However,
the method for clustering described below is general, and
can be used for clustering over any functionally interested
region and is not specific to the atrium.

B. Clustering of Functional Time Series

The shape of the cardiac action potential waveform of
different individual zebrafish hearts and under different ex-
perimental conditions shows considerable variability. This
variability makes logical algorithm design and supervised
learning difficult to perform, because ‘new’ waveforms will
be out of view of predefined logic or encountered data. To
make the algorithm robust to these sources of variability,
we propose here a novel two-step unsupervised labeling
framework.

For the first stage, each signal was treated as a point in
high dimensional space, in which clustering will be done.
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Fig. 4. Procedure of performing discretization of derivative: (a) signals 2,
17, 18 from Fig.3. We anticipated that after DoD transformation, 17 and
18 will become similar and be different from 2, (b) derivative of these 3
signals, (c) discretized derivative, (d) After mode filter is performed. In (d),
17 and 18 are more similar compared to in the original vector space.

Common partional clustering algorithms such as k-means,
fuzzy k-means and EM algorithm [11] can be used for this
task. In this paper, we assume that cells of similar function
will likely be spatially adjacent. Hence, the fuzzy clustering
with spatial constraints algorithm [12] was adopted. This
method penalizes spatially scattered clusters.

For the second stage of grouping, the clusters found in the
first stage of clustering will be further grouped into larger
clusters of similar shaped signals. Clustering the signals in
their original vector space was found to be insufficient for
this purpose. This is because the distance in original vector
space does not represent the physiological similarity of sig-
nals from different cardiac cells. Instead, having similar rates
of change and reaching ‘hills’ and ‘valleys’ in similar time,
in other words, having similar ‘trends’, is likely correlated
to similarities in physiology [13].

To represent the descriptive ‘trends’ by quantitative values,
a novel ‘discretization of derivative’ (DoD) procedure is
proposed. In DoD, the derivative of the original signal is
calculated. Derivative is a good representation of ‘trends’.
However, sometimes signals sharing the same trend can
be quite different in the magnitude of derivative values.
This makes clustering in the derivative vector space also
difficult. To cope with this problem, a discretization step
is performed. The numerical derivative values were then
thresholded to different integer values, which represent ‘fast
increasing’, ‘slow increasing’, ‘flat’, ‘slow decreasing’ and
‘fast decreasing’. Mode filter will be used to smooth the
trends acquired from DoD procedure. The DoD process is
illustrated in Fig.4.

Next, simple k-means clustering with a smaller number of
classes will be done on the DoD transformed representation
to give the final grouping of functional time series, as shown
in Figure 5. Time series in group 2 and 3 in Figure 5 (a)
show a diastolic depolarization profile, therefore are chosen
as the potential SAN signals, and the cells exhibiting these
signals are labelled as the SAN as shown in Figure 5 (c).

III. RESULTS

The result of two-stage grouping from four different hearts
is shown in Figure 6. The number of clusters was chosen to
be 25 in the first stage, and these were further merged in the
second stage to give 6 clusters. The numbers 25 and 6 are
chosen empirically.
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(c) Raw image with potential SAN labelled

Fig. 5. Tllustration of second stage grouping: (a) further grouped time
series from small clusters, thicker red frames represent manually identified
SAN groups, (b) raw image labelled with new groups, (c) potential SAN
labelled as red.

Within the same group, waveforms have similar trends,
despite differences in original values. Also, variabilities of
cardiac action potential morphology observed between dif-
ferent hearts is found not to affect the grouping performance.
Among different individual hearts, the identified potential
SAN area remains in similar position. According to visual
examination validation done by trained cardiac physiology
experts, the clustering and identification results are satis-
factory and further physiology experiments will be done to
verify the identified potential SAN regions.

IV. DISCUSSION AND CONCLUSION

In this paper, we present a novel pipeline of finding the
potential SAN of the zebrafish heart based on functional time
series data. Preprocessing including spatial and temporal
averaging, drifting removal, scaling and cycle averaging is
performed to get an averaged signal representing one cycle
for each pixel. First stage clustering is then done on the
original signal vector space to produce many small clusters,
which are then averaged to get a representative cycle for
each cluster. The proposed DoD method tranforms these
average signals to a representation that attempts to model
physiological similarity. Finally, k-means clustering is used
to further combine smaller clusters into larger groups of
similar pixels.

Our experiments and results show that the proposed
method is able to divide the zebrafish heart into physi-
ologically meaningful regions and identify potential SAN
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Fig. 6.

Results of grouping on 4 different hearts following the novel two-stage clustering approach presented in this paper. In the first stage, the atrial

region of interest was clustered into 25 regions (as shown in the middle row). The signals for these 25 clusters are shown in top row, where they have
also been further grouped in the second step into a total 6 final clusters based on shape similiarity of the time-series in each cluster. Manually identified
SAN signals and regions are labelled by thicker red frames (top row) and red patches (bottom row), respectively in each subfigure. Here, only the upper

half of the image is shown, which contains atrial tissue.

regions. In terms of intra-group similarity, method is robust
to waveform variations seen in different hearts. Due to lack
of exact knowledge of the location of the zebrafish heart SAN
in optical mapping data, quantitative validation of accuracy
of SAN identification can not be provided at this stage
and remains part of future work. Initial confidence in the
accuracy of the algorithm in identifying SAN comes from
visual identification of signal waveforms based on known
physiological properties of SAN cells by trained cardiac
physiology experts. Future improvements of the algorithm
will include automatic parameter selection and incorporat-
ing more detailed physiological knowledge into the current
processing pipeline.
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