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Abstract— In this paper, a novel approach for classification of
breast masses is presented that quantifies the texture of masses
without relying on accurate extraction of their contours. Two
novel feature descriptors based on 2D extensions of the reverse
arrangement (RA) and Mantel’s tests were designed for this
purpose. Measures of radial correlation and radial trend were
extracted from the original gray-scale values as well as from the
Gabor magnitude response of 146 regions of interest, including
120 benign masses and 26 malignant tumors. Four classifiers,
Fisher-linear discriminant analysis, Bayesian, support vector
machine, and an artificial neural network based on radial
basis functions (ANN-RBF), were employed to predict the
diagnosis, using stepwise logistic regression for feature selection
and the leave-one-patient-out method for cross-validation. The
ANN-RBF resulted in an area under the receiver operating
characteristic curve of 0.93. The experimental results show the
effectiveness of the proposed approach.

I. INTRODUCTION

Methods for computer-aided diagnosis (CADx) of breast

cancer have been investigated by researchers to classify

benign masses and malignant tumors in mammograms. Most

of the reported works have been focused on the analysis

of masses via texture and morphological features based on

reliable extraction of the contours of the masses. Lesions are

analyzed in terms of the shape of their boundaries (shape

features) [1]–[6], gray-scale variations within the margins or

in a ribbon surrounding the margins (texture features) [5],

[7]–[9], or changes in density across their boundaries (edge

sharpness features) [5], [8], [10], [11].

Sahiner et al. [1] combined texture features with mor-

phological features extracted from automatically segmented

masses and reported Az = 0.91 ± 0.02. Most of the other

methods described in the literature rely on boundaries traced

by expert radiologists. Rangayyan and Nguyen [6] obtained

Az = 0.93 by using only the manually traced contours of the

masses from which fractal dimension, fractional concavity,

and other shape factors were extracted.

Accurate estimation of the contour of a mass, either drawn

by a radiologist or extracted by segmentation procedures,

is made difficult by indistinct and ill-defined boundaries of

obscured masses and spiculated tumors. The aim of this study

is to develop and test new measures for classification of
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breast masses that do not strictly depend on outlined contours

and whose effectiveness is not influenced by the accuracy

with which these contours depict the mass.

Statistical techniques are conventionally used to determine

whether certain characteristics in terms of space and time

are present, with an associated confidence, in a given sig-

nal. Khademi et al. [12] applied a two-dimensional (2D)

extension of the reverse arrangement (RA) test [13] and

Mantel’s test for clustering [14] to examine, respectively,

nonstationarity and spatial dependence of pixel values in a

set of phantom images. They also explored the possibility of

applying such tests to generate feature descriptors.

In this work, we propose two novel feature descriptors to

quantify radial correlation and radial trend in the gray-level

values of a given region of interest (ROI) containing a mass.

A circular domain centered at the centroid of the mass is

explored by means of concentric circles, without requiring

any accurate boundary of the mass.

II. MATERIALS AND METHODS

A. Dataset of images

The mammograms used in this study were collected at

the San Paolo Hospital of Bari, Italy, using the Seno-

graph 2000D ADS 17.3 from GE Medical Systems. Our

set of full-field digital mammograms (FFDMs) consists of

194 images from 88 cases with the spatial resolution of

94 µm and gray-scale resolution of 12 bits/pixel. A total

of 146 ROIs, including 120 benign masses and 26 malignant

tumors, were obtained from the mammograms using contours

manually drawn by an expert radiologist specialized in

mammography. The centroid of each mass was computed

by using the first-order moments of the gray-scale values

within its contour weighted by their distances from the center

of the axes. Then, each ROI was automatically sized in

order to include the manually drawn contour and centered

at the centroid of the mass. Results of biopsy provided the

diagnostic classification of each mass used to validate the

proposed approach. Figures 1 (a) and (e) show two examples

of the ROIs used in this work, including, respectively, a

benign mass and a malignant tumor.

B. Preprocessing stage

The original ROIs were downsampled to the spatial res-

olution of 200 µm for reducing the computational cost

of the proposed methodology. Then, in order to enhance

properly the contrast of the masses, the look-up table (LUT)

information of the softer linear transformation encoded in the
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Fig. 1. (a,e) Original ROI including a benign mass (a) and a malignant tumor (e). (b,f) ROI after the LUT transformation. The contour manually drawn
by the expert radiologist and the computed centroid are superimposed on the image. (c,g) Circular domain centered at the centroid of the mass. A ring
cr of a given radius r, r = 40 pixels (c) and r = 80 pixels (g), is superimposed on the image. (d,h) Gabor magnitude response. Note that the two ROIs
were resized to the same dimension for display purposes.

DICOM tags [15] of the FFDMs was applied to the gray-

scale values of the ROIs. In Figs. 1 (b) and (f), two examples

of ROIs after the LUT transformation are shown, including,

respectively, a benign mass and a malignant tumor. The

contours drawn by the expert radiologist and the centroids

of the masses are superimposed on the ROIs.

A circular domain X of radius R centered at the centroid

of the lesion was extracted from each ROI (see Figs. 1 (c)

and (g)). Note that the two ROIs in Fig. 1 have been

resized to the same dimension for display purposes. As a

first attempt, for each ROI, the maximum radial length (Rm),

computed as the maximum of the Euclidean distances from

the centroid of the mass to each of the boundary coordinates,

is used as the radius of the domain X .

C. Extraction of oriented patterns

In order to quantify trend and correlation of the directional

components present within a mass, a set of 18 real Gabor

filters [16] equally spaced in the angular range (−π/2, π/2]
was applied. The 2D Gabor kernel g(x, y) oriented at −π/2
is defined as

g(x, y) =
1

2πσxσy
exp

[

−
1

2

(

x2

σ2x
+
y2

σ2y

)]

cos
(

2π
x

τ

)

,

(1)

where σx and σy are the standard deviation values of the

Gaussian envelope along the x and the y directions, and τ
is the period of the cosine modulation. The filter bandwidth

can be determined by two parameters: τ = 2σx ·
√

2 log(2)
and l = σy/σx, (τ = 24 pixels and l = 4 in this work).

The magnitude response [shown in Figs. 1 (d) and (h)] was

obtained using, for each pixel, the maximum value among

the 18 filter responses [17].

D. Radial correlation measure

The first proposed feature was designed to measure radial

correlation within a given domain X . Let us virtually divide

the domain X into R− 1 concentric rings of radius ri, i =
1, 2, . . . , R− 1 pixels, and consider the average of the pixel

values µi, i = 0, 1, . . . , R − 1, belonging to these rings.

Note that µ0 is the pixel value at the centroid of the mass.

A generic ring of radius r is superimposed on the image in

each case in Figs. 1 (c) and (g).

If radial correlation or radial dependence exists among the

pixels in the domain X , rings close to one another will be

coupled with average intensity values which are also similar.

In order to quantify the extent of correlation in the radial

direction, we define a radial correlation measure, RaCo,
based on Mantel’s test for clustering, as

RaCo =
1

R

R−1
∑

i=0

R−1
∑

j=0

|ri − rj ||µi − µj |. (2)

Note that a homogeneous distribution of pixel values in

the domain X would result in RaCo = 0. Higher values

of RaCo are indicative of lower spatial dependency or

heterogeneity among pixels in the radial direction, which is

typical of malignant tumors, whereas lower values of RaCo
indicate radial clustering, which is typical of benign masses.

E. Radial trend measure

Let us consider R − 1 circular regions Ci of radius i =
1, 2, . . . , R − 1, and the averages of the pixel values Mi,
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i = 0, 1, . . . , R−1, within these regions. We propose a radial

trend measure based on a novel 2D extension of the RA test,

which involves computing the number of times, starting with

the first average intensity value M0, that pixel values within

the complement of C0 in the domain X are less than M0.

The sum of all the counts defined as above is normalized by

dividing by R, as

RaTr =
1

R

R−1
∑

i=0

#X(Ci) < Mi, (3)

where Ci is the complement of Ci in the domain X .

Higher values of RaTr are indicative of radial trend (non-

stationarity), which can be correlated to the characteristics of

a malignant tumor infiltrating the surrounding tissue in the

radial direction (e.g., radiating spicules).

III. RESULTS AND DISCUSSION

The two proposed measures of radial trend and radial

correlation described above were computed for all of the

ROIs obtained from the FFDM database of mammograms.

For each ROI, four features were extracted by computing

the two measures from the original ROI after the LUT

transformation (RaTr1, RaCo1) and the Gabor magnitude

response (RaTr2, RaCo2).

The performance of each feature was, at first, analyzed

independently without training any classifier by means of the

ROCKIT package [18]. The obtained individual area under

the receiver operating characteristic curve (Az) values are

listed in Table I. The Az values obtained indicate satisfactory

to good performance in the classification of benign masses

versus malignant tumors.

In order to evaluate the dependence of the performance

of the features on the dimension of the domain X , the Az

value was computed, for each feature, by varying the radius

of the domain in the range [0.5Rm, Rm], where Rm is the

maximum radial length defined in Section II-B. Figure 2

illustrates the effect of varying the radius on the Az values.

Experimental results show that the proposed features are

robust to variations in the dimension of the domain X .

To avoid bias, feature selection using stepwise logistic

regression [19] and pattern classification were performed

using the leave-one-patient-out cross-validation method. All

of the four features were selected more than 50% of the

TABLE I

LIST OF FEATURES FOR CHARACTERIZATION OF RADIAL CORRELATION

AND RADIAL TREND WITH Az VALUES.

Symbol Feature Az

RaCo1 Original ROI after LUT transformation 0.83
RaCo2 Gabor magnitude response 0.83
RaTr1 Original ROI after LUT transformation 0.82
RaTr2 Gabor magnitude response 0.77

RaCo1, RaCo2: radial correlation measures;
RaTr1, RaTr2: radial trend measures. The Az values

were estimated using ROCKIT.
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Fig. 2. Effect of varying the radius of the domain X on the Az values
of the proposed features. RaTr1 , RaTr2: Radial trend measures; RaCo1,
RaCo2 : Radial correlation measures.

time. Four classifiers, Fisher Linear discriminant analysis

(FLDA), the Bayesian classifier (quadratic discriminant ana-

lysis with Bayesian assumption, BAYES), support vector

machine (SVM) [20], and an artificial neural network clas-

sifier based on radial basis functions (ANN-RBF) [21] were

used. Further details of the classifiers used in this work can

be found in Duda et al. [20] and Haykin [21]. Az (and

standard error, SE) values of 0.82 (0.05), 0.76 (0.06), 0.85
(0.05), and 0.93 (0.03) were obtained, respectively, with

the four classifiers listed above. Table II lists the obtained

results along with the asymmetric 95% confidence intervals

estimated using ROCKIT. The high values of Az obtained,

especially 0.93 with the ANN-RBF, indicate that the four

features complement one another and can be used together to

achieve increased classification efficiency. The performance

achieved is comparable to the best results reported in the

literature [1], [3], [6], [7]. In particular, in the work by

Sahiner et al. [1], Az = 0.91 is reported when the leave-

one-patient-out method was applied to partition the data set

into the training and test sets.

The experiments were carried out using Matlab R© of ver-

TABLE II

RESULTS OF ROC ANALYSIS USING DIFFERENT TYPES OF CLASSIFIERS.

Classifier ROC analysis (Az) SE I95%

FLDA 0.82 0.05 [0.72, 0.90]
BAYES 0.76 0.06 [0.63, 0.87]
SVM 0.85 0.05 [0.74, 0.92]
ANN-RBF 0.93 0.03 [0.85, 0.98]

FLDA: Fisher Linear discriminant analysis; BAYES: Bayesian
classifier; SVM: support vector machine; ANN-RBF: artificial

neural network classifier based on radial basis functions.
The Az values were estimated using ROCKIT along with
the related standard error (SE) and the asymmetric 95%

confidence interval (I95%).
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sion R2012a on an Intel R© CoreTM i7 processor at 2.10 GHz

and 4 GB of RAM. The average processing time of each

ROI for the whole methodology described is 18.2 s using

the ANN-RBF classifier.

The main advantage of the proposed methodology is that

its effectiveness is independent of the accuracy with which

the contours used depict the masses. In fact, the quantifica-

tion of radial correlation and radial trend among pixels only

requires a circular domainX properly centered on the lesion.

This is confirmed by the low variability in the classification

performance of the features in relation to the size of the spa-

tial domain X used in their computation. Although the ROIs

in the present work were initially obtained with reference

to the contours of the masses drawn by a radiologist, this

step is not required in the proposed procedure since only the

spatial domain X is used for computation of the features

and it will be removed in subsequent work. The centroid

and a range of the expected size of the mass are required to

define the domain X used to compute the features. However,

the centroid of the mass could be detected by means of

automated procedures [22], already developed by the authors,

or manually pointed by a radiologist. The range of the size

of masses expected in a certain dataset or population could

be estimated from previous data or experience.

The obtained results show that the features proposed in

the present work could be used to assess the likelihood of

malignancy of breast masses in mammograms.

IV. CONCLUSIONS AND FUTURE WORK

New methods were proposed in the present paper for

quantification of radial correlation and radial trend in breast

masses as seen in mammograms. The developed features,

inspired by Mantel’s [14] and reverse arrangement [13]

tests, can be used for classification of breast masses in

mammograms without requiring the extraction of the precise

contours of the masses.

Further work is in progress to optimize the proposed fea-

tures, design contour-free features, and quantify, for instance,

correlation and trend between pixels in the angular direction,

so that the classification performance can be improved.

Appropriate grid search will be also carried out in order to

chose the optimal set of SVM and ANN-RBF parameters.

The robustness of the method will be tested with larger

and publicly available databases of screen-film mammo-

grams (e.g., miniMIAS [23] and DDSM [24] databases).

The proposed techniques should assist in the development

of improved methods for screening and diagnosis of breast

cancer.
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