
  

  

Abstract— Glioblastoma Mulitforme is highly infiltrative, 

making precise delineation of tumor margin difficult. Multi-

modality or multi-parametric MR imaging sequences promise 

an advantage over anatomic sequences such as post contrast 

enhancement as methods for determining the spatial extent of 

tumor involvement. In considering multi-parametric imaging 

sequences however, manual image segmentation and 

classification is time-consuming and prone to error.  As a 

preliminary step toward integration of multi-parametric 

imaging into clinical assessments of primary brain tumors, we 

propose a machine-learning based multi-parametric approach 

that uses radiologist generated labels to train a classifier that is 

able to classify tissue on a voxel-wise basis and automatically 
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generate a tumor segmentation. A random forests classifier was 

trained using a leave-one-out experimental paradigm. A simple 

linear classifier was also trained for comparison. The random 

forests classifier accurately predicted radiologist generated 

segmentations and tumor extent. 

I. INTRODUCTION 

Glioblastoma Muliforme (GBM) is the most common 
primary malignant brain tumor. Outcomes for GBM patients 
remain poor even after multimodal therapy (including 
surgical resection, radiotherapy, and chemotherapy) with a 
median survival of approximately one year and a 2-year 
survival rate of less than 20%[1, 2]. GBM is highly 
infiltrative, making precise delineation of tumor margin 
difficult.  Contrast enhancement on MRI has traditionally 
been used to plot the geographic extent of tumor 
involvement[3].  However, current consensus acknowledges 
the role of additional MRI markers in the characterization of 
tumor margins beyond the boundaries of contrast 
enhancement [4-7]. 

A significant predictor of patient outcome is the extent of 
surgical resection.  Despite this, complete resection of 
enhancing tissue alone does not result in a resection of all 
tumor burden, and it is recognized that tumor remains beyond 
the limits visible on anatomic imaging sequences such as T1 
+ Gadolinium (contrast) MRI.  One might suggest a more 
extensive surgical margin to improve clinical outcomes; 
however, extension of surgical margins can increase the risk 
of surgical morbidity as often tumor margins may approach 
functionally important regions of the brain.  Thus accurate 
pre-operative definition of the geographic extent of tumor is 
highly desirable. 

It is, however, very difficult for a neurosurgeon to 
integrate the multiple available MR sequences in a single 
operative session.  Even considering multi-parametric 
sequences is technically challenging.  Manual image 
segmentation and classification are time consuming and 
prone to error.  Ultimately, a single map combining all the 
relevant MR parameters in the characterization of affected 
brain would have significant clinical utility [8]. 

Our aim is to develop a rule-based multi-parametric 
approach that incorporates multiple MRI markers in a 
concerted fashion as an improved method of characterizing 
the extent of viable tumor within a GBM lesion. Further, we 
propose a machine learning based multi-parametric approach, 
which uses radiologist generated labels to train a classifier 
that is able to classify tissue on a voxel-wise basis and 
automatically generate a tumor segmentation. 
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II. MULTI-PARAMETRIC MRI 

A. Imaging Protocol 

Preoperative MRI examinations of subjects with GBM 
were chosen from the Comprehensive Neuro-oncology Data 
Repository (CONDR) at Washington University in St. Louis. 
All data was collected at Washington University  and 
Swedish Neuroscience Institute (Seattle, WA) using a 
standardized imaging protocol implemented on all clinical 
scanners at each of the two participating institutions. This 
standardized brain tumor MR imaging protocol is based on 
the ACRIN 6686 (RTOG 0825) [9] protocol and includes 
MP-RAGE/SPGR (SPoiled Gradient Recalled) Gd-enhanced 
volumetric acquisition and T2-weighted and FLAIR 
sequences in addition to advanced imaging sequences 
including diffusion (acquired as diffusion tensor imaging 
(DTI, 12 direction, bmax 1400) [10]), dynamic susceptibility 
contrast (DSC) [11] to generate relative cerebral blood flow 
(rCBF) and cerebral blood volume (rCBV) parameter maps. 
The protocol includes 7 pulse sequences and sets of 
acquisition parameters that yield 11 derived image sets.  

B. Image Processing 

Eight MRI image sets, primary and derived [T1 pre- and 

post- contrast, T2, Fluid Attenuated Inversion Recovery 

(FLAIR), Susceptibility Weighted Imaging (SWI), Apparent 

Diffusion Coefficient (ADC), TraceW, and rCBV], were 

interpolated to 1 mm
3
 isotropic voxels and co-registered 

using nordicICE (NordicNeuroLab AS, Bergen, Norway) 

perfusion and diffusion processing. 

III. RULE-BASED EXPERT ANALYSIS 

The literature has shown that the inclusion of multi-
modality MR sequences can improve the performance of 
tumor tissue classification [8, 12].  Systematic methods to 
establish an accurate ground truth labeling, however, remain 
elusive. At present, most radiologists and neurological 
surgeons rely on qualitative assessment of independent image 
sequences when considering brain tumor diagnoses.  A more 
quantitative and rigorous method focusing on the integration 
of imaging sequences to, collectively, answer questions of 
tissue diagnosis, tumor margin, and even therapeutic 
response relies upon a more quantitative and specific 
methodology for image analysis.  In this work, we propose 
such a method, utilizing expert radiologist evaluation along 
with techniques developed to combine MR parameter maps 
into a unified probability map suggesting a more sensitive 
and specific measure of tumor margin.  

A.  Approach 

A board-certified radiologist manually segmented regions of 
signal abnormality on each MRI parameter map (Table 1) to 
produce a set of 6 object maps (Figure 1). All images were 
registered to a common, 1 mm isotropic atlas space prior to 
segmentation. These segmentations were reviewed and 
approved by a CAQ-certified neuroradiolgist.  The various 
types of images contained information about the presence or 
absence of tumor within each voxel in the image volume 
based on current neuroradiology conventions. Although each 
type of image contains valuable information when considered 
separately, hypotheses about the viability of tissue can be 
strengthened immensely if all images are considered 

 
concurrently. The radiologists’ knowledge of how to combine 
the information contained in the images is summarized as a 
set of heuristic rules (Table 2). 

 
Figure 1.  Radiologist generated Segmentations:  a) SWI, b) 

Necrosis, c) FLAIR, d) Diffusion restriction, e) Enhancement, f) 

rCBV have been superimposed on T1-post contrast image. 

B. Rules 

In general, the GBM region of interest is composed of 
tissue in multiple states, including: necrotic tissue, actively 
growing tumor, surrounding edema, infiltrating tumor and 
normal, non-diseased brain [6]. Variances do occur, notably, 
necrotic tissue is occasionally absent or not visible, and 
although often actively growing tumor is shown as taking up 
contrast dye, at times significant tumor burden is identified in 
regions of tissue that do not take up Gadolinium contrast. 
While tissue in each of these states may be identifiable, the 
boundaries are not discrete and the classification not 
unambiguous.  The infiltrative nature of gliomas instead 
results in a visible gradient boundary between regions. In 
order to represent this border uncertainty, we represent tumor 
location by labeling voxel areas with a Probability of Viable 
Tumor indication rather than an absolute classification. 
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Summarized in Table 2, the radiologist assigned 
probability of active tumor to each object map and combined 
overlapping object maps within a voxel. Normal brain 
denotes no incidence of tumor whereas highest represented 
the highest probability of tumor. Indeterminate signifies lack 
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of knowledge about the presence of tumor in a particular 
voxel. Individually segmented MRI volumes were combined 
by the radiologist to produce labels suggesting a probability 
of tumor being found at each voxel location. 

IV. MACHINE LEARNING 

Machine learning techniques were developed to 
automatically reduce the high dimension source data and 
generate a tumor probability prediction. It is intended that 
the values produced by our machine learning algorithms 
should predict the radiologist assigned Probability of Viable 
Tumor in each subject. 

Classifier models process voxel values from each of the 
eight MR data types, which were fused to form feature 
vectors. These models were trained and tested using 
combinations of truth labels, generated by combining 
manual segmentations based on the radiologist's rule set and 
estimate of the probability of active tumor, as summarized in 
Table 2. 

A. Approach 

Random forests (RF) [13] and linear classifiers were 
trained using the leave-one-out experimental paradigm. 
Given N labeled data sets, this approach uses N-1 data sets 
to train the classifier and predicts the labels of the N1

h set. 
This process is repeated until the classifier has predicted all 
data sets. 

The RF algorithm generates a predictive model by 
constructing an ensemble of decision trees (also known as 
classification or regression trees) [13] using the training data 
set. Each decision tree is constructed using a randomly drawn 
subset of the variables in the data and using a subset of 
examples from the training set. This creates a set of trees, 

each with a slightly different predictive model. For a given 
test input, random forests combines the votes of all trees to 
generate an overall prediction. The probability of correctness 
is then computed as the fraction of trees that voted yes. Our 
decision tree is constructed by partitioning the training data 
based on the values of the variable that best splits the data 
into homogenous subsets (called nodes) according to the 
value of the target variable [14, 15]. This process of 
partitioning is applied repeatedly using the rest of the 
variables until no further gain is attained. Each leaf node of 
the decision tree is associated with a constant prediction that 
is equal to the most frequently occurring value of the target 
variable. 

This RF based analysis is complemented by assessing the 
baseline predictive ability of a linear classifier on our data. 
The linear model simplifies feature space partitioning by 
assuming that voxels belonging to different tissue types, each 
represented by its feature vector, can be categorized using a 
D-dimensional hyper-plane. Where D is equal to eight in this 
work and matches the length of the feature vector. This 
simplification provides some resistance to over-fitting the 
training data, but often neglects to capture complex 
intricacies present in real data. 

To construct tumor probability estimates and tissue 
segmentations, feature vectors are constructed for each voxel 
in the brain, using the value of that voxel in each of the 8 MR 
data types. Once trained, the classifier is applied to every 
voxel (every feature vector) in the test set and classifies the 
tissue as normal or diseased. 

B. Results 

We compare the predictive power of our Random Forests 
method to that of a linear classifier, trained with identical 
data. While both methods highlight areas including active 
tumor, the RF classifier generated a multi-parametric 
probability map that more accurately predicted radiologist 
generated segmentations and tumor extent than did the linear 
classifier. Figure 2 highlights results attained using 
regression analysis, which compares radiologist generated 
ground truth (a), RF (b), and the linear model (c). 

Figure 2. Tumor extent from a) 
radiologist's prediction, b) random 
forests, and c) linear regression. 
Radiologist tumor boundary is 
superimposed on b) and c). The color 
scale in a) relates the radiologist 
assessment, listed in Table 2, as well 
as the normalized training label 
assigned to each voxel. Moderate label 
in b) may be classification error or 
potential sites for recurrence. 
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Receiver Operating Characteristic (ROC) analysis [16] 

was used to compare the predictions of the random forests 

classifier and a linear regression-based classifier relative to 

the manual segmentation standard. All voxels in each multi-

parametric image volume were analyzed. Figure 3 illustrates 

the average ROC curves for all subjects and demonstrates 

that the RF classifier is a significantly better predictor of 

radiologist generated segmentations and tumor extent than 

the linear classifier. 

 

Figure 3. ROC curves for random forests (blue) and linear model 

(green) predictions of tumor extent. 

 

Table 3 summarizes the results of ROC analysis for 

individual subjects. Differences in AUC between Random 

Forests and Linear classifiers were determined to be 

normally distributed with a Shapiro Wilk W test (P = 0.53). 

The mean difference was tested against a hypothesized 

difference of zero with the paired t test and was significantly 

different (P = 0.0002). Random Forests results in an AUC 

that is 16% larger than the AUC for the linear classifier. 

V. CONCLUSION 

The infiltrative nature of gliomas makes assessment of 

tumor burden a challenge, and multi-parametric imaging 

markers may offer a method to improve measures of tumor 

invasion and, ultimately, extent of resection.   

By enhancing our multi-parametric approach with 

quantitative methods for image co-registration, image 

processing and analysis, and subsequent image 

segmentation, we laid the foundation for a Machine 

Learning methodology to facilitate the integration of multi-

parametric imaging sequences in consideration of tumors 

such as malignant gliomas.  In this methodology we 

eliminate manual segmentation and generate a probability 

map that incorporates contrast enhancement with additional 

MRI markers to produce a composite image that predicts the 

probability of viable tumor and tissue type.  

It is our expectation that these methods provide a 

foundation for subsequent studies that facilitate the 

integration of multi-modality imaging into the clinical 

management of primary brain tumors and ultimately 

improve patient’s clinical outcomes as a result. 
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Table 3. ROC Analysis (AUC) 

Subject Random Forests Linear Classifier 

W001 0.914 0.699 

W010 0.925 0.759 

W015 0.870 0.790 

W019 0.952 0.810 

W025 0.941 0.841 

W029 0.921 0.721 

W034 0.924 0.732 

Overall 0.921 0.765 
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