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Abstract— The EIT reconstruction problem can be solved
as an optimization problem using Simulated Annealing. Dif-
ferent objective functions have already been used: Euclidian
distance between the simulated and observed potentials; total
least squares error minimization. The objective function was
partially evaluated in both methods. In this paper, a new image
reconstruction method that combines the best characteristics
from both described methods is proposed. The total recon-
struction cost is smaller when compared to each method using
one objective function alone. A denser reconstruction mesh is
used, and a regularization is adopted by adding a new term
similar to the first-order Tikhonov functional. The impact of
the regularization in the previous two methods is also analyzed.

I. INTRODUCTION

EIT is a diffuse imaging technique for determining the
electrical conductivity distribution inside an object from its
boundary measurements. A set of electrodes is attached to
the object surface, for example, a human body, then electrical
current is injected through the electrodes and electrical
potential are measured on these electrodes. In EIT it is
possible to reconstruct either difference or static images.
The difference image modality can be used when changes in
the resistivity occur [1]. The reconstruction of static images
is substantially more difficult than the difference imaging
because it is necessary to have a reference voltage.

The spatial resolution of EIT is not comparable to other
imaging techniques such as magnetic resonance, comput-
erized tomography or ultrasonic imaging. However, EIT
presents some advantages over these techniques, such as
being harmless to the patient, low cost and portable. EIT
also has faster time-response characteristics, which enables
it to monitor cyclic changes in the living tissues better than
conventional imaging modalities. Many researchers have
been making continuous efforts in the pursuit of algorithms
that are, at the same time, fast and capable of providing
images of good spatial resolution.

Martins et al. [6, 7] used the Euclidian distance between
the measured electric potentials and the calculated potentials
as objective function. Martins and Tsuzuki [9] minimized the
total least squares errors. Both methods partially evaluated
the objective function. In this paper, it is shown that the
characteristics of both methods can be efficiently combined.
The total reconstruction cost will be smaller than each of the
objective function used alone.
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This paper is structured as follows. Section II reviews
current results on EIT reconstruction using Simulated An-
nealing (SA) with objective functions. Section III proposes a
new regularized multi-stage approach where the SA objective
function is replaced during the optimization process. In
section IV some results obtained from physical data are
presented. Finally, section V rounds up the paper with the
conclusions.

II. RECONSTRUCTING EIT IMAGES THROUGH SA WITH
PARTIAL EVALUATION OF THE OBJECTIVE FUNCTION

The forward and inverse problems are briefly explained.
Two different objective functions in which are partially
evaluated, are described. In the following, both objective
functions are combined in just one method.

A. Formulation of the Forward Problem

The flow of electrical current within a conductive thin
film, Ω, can be described at any point by the 2D Laplacian
equation

∇(σ∇φ) = 0 (1)

where σ is the film conductivity and φ is the electrical
potential. The typical forward problem in EIT is given
the conductivity distribution σ and the current J injected
through boundary electrodes, find the potential distribution
φ within Ω and in particular the resulting potentials at the
measurement electrodes φm. The frequencies used in EIT are
low enough so that the quasi-static approximation holds, and
thus one can ignore capacitive and inductive effects. At the
boundary, currents are injected through electrodes; thus the
current density Jl injected through the l-th electrode is given
by (current pattern)

σ
∂φ

∂ n̂
= Jl (2)

where n̂ is the external normal versor, and the current density
is zero elsewhere at the boundary [2].

B. The Inverse Problem

The inverse problem is formulated as given the injected
currents Jl and the potentials at measurement electrodes φm,
find the electrical conductivity distribution σ within Ω. The
Laplace equation (1) with Dirichlet and Neumann boundary
conditions applied is referred to as the continuum model of
the forward problem. If considering only the real part of
conductivity, the model is still valid with a unique and strictly
positive conductivity function σ [3].

In practice, the potentials on the domain boundary are
measured only at a finite number of points, so the Dirichlet
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boundary condition is incomplete. For an irregular domain
and isotropic media, analytical solution to the Laplace equa-
tion (1) with boundary condition (2) is unknown; thus, the
partial differential equations were approximated by the FEM,
the domain is discretized with triangular linear elements
with constant conductivity and both problems, forward and
inverse, are solved numerically. When the local element
matrices are stated in terms of the global coordinates of
the mesh, the global conductivity matrix which includes
electrode contact impedance effects, is obtained; then

K ·Φ =C (3)

where K(σ)∈Rs×s is the conductivity matrix calculated at a
given particular distribution σ , Φ is a matrix containing nodal
potentials corresponding to each applied current pattern, and
C represents p linearly independent current patterns.

C. Solving the Inverse Problem as an Optimization Problem
One possible approach to the EIT inverse problem is to

look at it as an optimization problem. Since, as seen in
section II-B, the FEM can be used to solve the forward
problem on a simulated domain, one possibility for such
objective function is to take the Euclidean distance

E (σ) =
√

Σ|Φi
m−Φi

c (σ)|2 (4)

between the measured electric potentials Φi
m and the cal-

culated potentials Φi
c (σ) for every applied current pattern.

Indeed, the minimization of (4) is a classic approach to EIT
[4, 5, 6, 7]. In [4] it was pointed that the minimization of (4)
using gradient-based algorithms is difficult, since (4) is often
ill-conditioned. Herrera et al. [5] avoided the computation
of objective function gradients by means of SA and by
doing so, managed to reconstruct very accurate conductivity
distributions of the body, but at a very high computational
cost.

D. SA with Partial Evaluation of the Objective Function
Martins et al. [6, 7] proposed a mitigation of this high

computational cost: instead of fully evaluating the objective
function E at each SA iteration, an estimate Ẽ and upper
and lower boundaries Emax and Emin are obtained. Since SA
deals only with variations of the objective function between
iterations, those are converted in an estimate and boundaries
of variation ∆Ẽ, ∆Emax, ∆Emin. It was shown if in a given
iteration ∆Ẽ, ∆Emax, ∆Emin satisfy the following inequalities,

Perr ≥min(e
−∆Ẽ/kt ,1)−min(e

−∆Emax/kt ,1) (5)

Perr ≥min(e
−∆Emin/kt ,1)−min(e

−∆Ẽ/kt ,1) (6)

then the probability of SA at that iteration deviating of an SA
with full objective function evaluation is less than Perr. Esti-
mates of the objective function were obtained by iteratively
solving (3) with Conjugated Gradients (CG) algorithm while
obtaining an upper limit on the norm of the error at each CG
iteration using a technique described by Meurant [8].

The EIT reconstruction technique that uses the partial
evaluation of objective function (4) (as in [6, 7]) will be
henceforth labelled as “CG”.

E. Total Least Squares Error as an Objective Function

Martins and Tsuzuki [9] pointed that the partial evaluation
of (4) could have scalability issues with the mesh density.
They proposed a new objective function, also partially eval-
uated. By taking (3), reordering the variables such that the
electrode potentials correspond to the last elements of Φ, one
can write (

Kii KT
ic

Kic Kcc

)(
Φi
Φc

)
=

(
0
Jl

)
(7)

where Φi is the vector of tensions at the internal nodes, Φc
is the vector of tensions at the electrodes, Kii, Kic and Kcc are
blocks of the matrix K (σ) and Jl is the injected current at the
electrodes (the injected current at the internal nodes is zero).
By imposing Φc = Φm (that is, the potentials at electrodes
of the simulated domain are identical to the measured ones)
and allowing an error on (7), then

K̂ (σ)Φ+ e = Ĵl (8)

where

K̂ =

(
Kii
Kic

)
Ĵl =

(
−KT

icΦm
Jl−KccΦm

)
(9)

and e is an error vector added to the reduced system to make
it consistent with the replacement Φc⇒Φm. Since the error
required tends to zero as Φc approaches Φm, one could take
its minimum, subject to (8), as the measure of consistency
between the simulated domain and the physical experiment
for a given current pattern. A new objective function is

E(σ) =
√

∑
l

Dl(σ)
2 (10)

Dl = min
Φ

{√
eT e : K̂ (σ)Φ+ e = Ĵl

}
(11)

The minimization problem in (11) is a typical least squares
problem. In [9], Martins and Tsuzuki showed how the
minimum value can be evaluated interactively with upper and
lower boundaries, so (5) and (6) can be used as stopping
criteria. One of the limitations of this process is that in
order to obtain a good lower boundary for (11) one needs an
estimate of the smallest eigenvalue of K̂T K̂. They proposed
a technique that can obtain good enough estimates of this
eigenvalue while calculating lower and upper boundaries for
(11) for a single current pattern, although spending much
iterations that would be necessary. This “iteration excess”
is mitigated by the fact that the eigenvalue obtained when
calculating (11) for a single current pattern may be reused
for all other patterns.

Another more serious limitation arises from the fact that
the outer SA algorithm can make the subproblem of optimiz-
ing (11) arbitrarily ill-conditioned by making Kic very close
to zero. Under those circumstances, arbitrarily low values of
(11) can be obtained. In [9], Martins and Tsuzuki proposed
to impose fixed values of conductance on the outer layer of
the domain (possibly using the approach in [6], for instance).
They also suggested, although did not explore it further, to
use a regularization procedure to keep the inner problem
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from becoming too much ill-conditioned. The reconstruction
technique that uses partial evaluation of objective function
(11) will be henceforth labelled “LB” (from the “Lanczos
Bidiagonalization” algorithm).

III. REGULARIZATION AND TWO-STEPS
RECONSTRUCTION

The reconstruction processes in [6] and [9] used low
density FEM meshes, such that the number of variables in
the conductivity parametrization was less than the number of
independently observed current values. For denser meshes it
is necessary to adopt some form of regularization of the con-
ductivity. The regularization adopted here is a modification
to the objective function by adding to it a new term. The new
objective function is given by E∗(σ)=E(σ)+αΩ(σ) where
α is a constant and Ω(σ) is a functional. The functional
adopted here is the total norm of the gradient, given by

Ω(σ) =
∫
|∇σ |2 dx. (12)

This is equivalent to the first-order Tikhonov func-
tional [10]. This regularization has also the positive by-
product of avoiding the ill-conditioning problems of the
approach in [9] without requiring previously known values
for the external impedance values.

Although the adoption of regularization allows reconstruc-
tions of EIT images using only the LB technique, it is
interesting to consider another one because of its drawbacks,
specifically the required inner iterations for estimating the
smallest eigenvalue of K̂T K̂. This has the effect of creating
a fixed minimum number of iterations for the evaluation of
the objective function at a single current pattern. This effect
is more pronounced at the earlier stages of the optimization
process, when few iterations would be required to compare
two different solutions. While its overall performance is
better, the objective function evaluation on LB is more
expensive than objective function evaluation on CG in the
earlier stages of the reconstruction.

This leads to the idea of performing a two steps re-
construction: start the reconstruction process using the CG
technique, then switch to the LB technique while keeping the
optimization variable state. If both objective functions have
approximately the same convergence trajectory, this should
allow a reconstruction method that is cheaper than both
approaches proposed in [6] and [9]. Since the optimization
variables (the conductivity parameters) are exactly the same
in both problems, the only issue remaining is to move the SA
parameters (that is, the temperature) from one optimization
problem to another, as the objective functions themselves are
vastly different. This task is equivalent to “jump starting” a
second SA optimization by taking the current variables of an
already running optimization process. If the temperature pa-
rameter of the second optimization is too high, the produced
state will be destroyed, while if the temperature parameter
is too low, the new process may become trapped in local
minima. Ever since SA was proposed, a relation has been
observed between solution acceptance rate and temperature.

(a) (b) (c) (d)

Fig. 1: (a) “Triangle” Phantom and its reconstructions using
(b) the approach in [6], (c) the approach in [9] and (d), the
aproach presented here. (c) and (d) are virtually undistin-
guishable.

Fig. 2: Inner Iterations × Outer Iterations, for CG and LB
objective functions. LB proj is an hypothetical evaluation of
LB without the cost of estimating the smallest eigenvalue of
K̂T K̂.

Since our problem is precisely to find the initial temperature
of the second SA optimization, an arbitrary temperature scale
is constructed using the progression of acceptance rates both
from CG and LB optimizations. With this scale it is possible
to convert CG SA temperatures to LB SA temperatures.

IV. RESULTS

For the evaluation of the two-steps approach, the same
data for the three cucumbers in triangular shape from [9] was
processed, but this time, 1047 nodes and 1868 triangular 1st -
order elements (see Fig. 1) were used. Reconstructions were
at first performed with the CG technique and then with the
LB technique.

The performance of each reconstruction can be seen in
Fig. 2 (notice that the cost of a single LB inner iteration is
roughly twice the cost of a CG iteration - see [9]). The total
cost is roughly proportional to the area bellow the graph.
The cost of the reconstruction using LB is only 15% smaller
than the reconstruction using CG. The performance of LB
is worse than CG in the earlier steps of the reconstruction.
This happens because of the need for estimating the smallest
eigenvalue of K̂T K̂ (indeed, one can see in Fig. 1 that an hy-
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Fig. 3: Temperature × rejection rate for both CG and LB
objective functions.
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Fig. 4: Inner Iterations × Outer Iterations, for the two-steps
reconstruction.

pothetical LB reconstruction without this cost would almost
always outperform CG). As one can see, the reconstructed
image through the two-steps technique (Fig. 1d) is virtually
indistinguishable from the image obtained from a pure LB
reconstruction (Fig. 1c).

To adopt a two-steps reconstruction, it is important to swap
objective functions while keeping the SA algorithm roughly
in the same state. It is necessary to create a common an-
nealing temperature scale between both objective functions.
For that, the solution rejection rate × temperature for both
objective functions is plotted. One can see in Fig. 3, that it
is possible to find a temperature scale for which both curves
match reasonably well. The swap point was chosen a the
point when the rejection rate reaches 50%.

The performance of the two-steps reconstruction can be
seen in Fig. 4 and in Table I. As one can see, the objective
function swap is performed reasonably well, as the evolution
of the LB reconstruction is very similar to that on Fig. 2. The
total cost is 22% cheaper than a pure CG reconstruction, and
9% cheaper than a pure LB reconstruction.

The SA algorithm has two phases: first phase where the
domain is explored, and second phase where the solution is
detailed. It seems that both methods have characteristics as-
sociated to one of the SA phases. For a better understanding

TABLE I: Total iterations for the reconstruction methods

Method Total iterations

CG 31625174
LB (×2) 26597610
two steps 24494677

of such symbioses, further research is necessary.

V. CONCLUSIONS

It is proposed here a new approach to solve the EIT
inverse problem that combines the best characteristics of the
proposals in [6, 7, 9]. This approach uses a two steps SA
algorithm that combines two objective functions with partial
evaluation. The total reconstruction cost is smaller than when
each objective function is used alone. The use of a regular-
ization similar to Tikhonov eliminates the LB potential ill-
conditioning. Consequently, the impedance distribution on
the outer layer of the domain was calculated.
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