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Abstract— The multi-dipole EEG source localization problem
is (usually) highly nonlinear with a non-convex cost function.
Moreover, the gray matter tissue is located in several disjunct
regions in the head which leads to a non-continuous solution
space. For solving this problem an efficient algorithm which
can handle multi-source activities is needed. In this paper,
a modified particle swarm optimization (MPSO) method is
proposed to solve the multi-dipole EEG source localization.
The method is tested on synthetic EEG signals generated from
two strong active sources and a noisy background source. The
results show that using the new method is a reliable choice
when we deal with a strong multi-active source scenario, in
which a single dipole source localization may fail.

I. INTRODUCTION
Epilepsy is one of the most common neurological diseases,

and is present in up to 1% of the world’s population.
Many patients with epilepsy never receive the treatment
which make them seizure free; consequently, treatment of
epilepsy by medications is a major challenge, according to
the World Health Organization [1]. Although intracranial
surgery involves inherent risks, these risks are smaller than
the risks of uncontrolled seizures. An electroencephalogram
(EEG) is the most important method that is used in the
clinical daily routine to find the source of activities inside the
brain. The procedure of the EEG source localization deals
with two problems: 1) a forward problem to find the scalp
potentials for the given current source(s) inside the brain, 2)
an inverse problem to estimate the source(s) that fit with the
given potential distribution at the scalp electrodes.

The EEG source localization problem is (usually) highly
nonlinear and requires efficient algorithms for its solution.
The most widely used optimization methods for solving the
EEG inverse problem can be classified into two groups:
gradient methods, which use function and derivative infor-
mation (e.g., Levenberg-Marquardt [2]), and search methods
(non-gradient techniques) which use only function values
(e.g., Nelder-Mead downhill simplex [3]). In both cases the
methods minimize the cost function by iteratively adjusting
the parameters of the dipole sources. The gradient-based
optimization is fast to converge and effective when there is
only one dipole in the source model and the data is noiseless.
But when we use the multi-dipole model and have noisy data
the local optimization approaches are not always effective
since they are often trapped in local minima [4]–[8].

The dimension of the EEG source localization problem can
be reduced by factoring out the linear parameters but still a
fundamental problem remains: the least squares cost function
is highly non-convex with respect to the locations of the
dipoles. The gray matter tissue is located in several disjunct
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regions in the head which leads to a non-continuous solution
space and makes the problem more difficult to solve using
standard optimization methods [9]. Moreover, by applying
the physiological constraints, such as orthogonality (sources
are orthogonal to the gray matter surface) and the sparsity,
the problem has a non-differentiable cost function [10]–[12].
In addition, the final solution often depends on the initial
approximation and the number of local minima of the cost
function [13] since reasonable initial guesses are difficult to
make

Metaheuristic algorithms for global optimization have
been used in the solution of the EEG inverse problem
[14]–[16], and most of them reported high accuracy on the
estimation of multiple dipoles with simulation and realis-
tic studies. Nevertheless, a strict statistical study on the
variability of these results under realistic conditions has
not yet been performed, and the establishment of realistic
confidence intervals as a function of the parameter space of
the metaheuristic algorithms remains an open task.

Particle swarm optimization is a swarm intelligence al-
gorithm for numerical optimization problems [17], [18]. In
previous studies done by the authors, [19], [20], a modified
particle swarm optimization (MPSO) method was proposed
for solving the EEG source localization. In [19], by several
examples, it is shown that, where a deterministic method, i.e.,
DIvide RECTangle (DIRECT) failed the MPSO could find
the optimal solution significantly faster than other improved
version of the PSO, as well as GA. In addition that, the
MPSO is less prone to be trapped in local minima. In [20]
and [21], it was shown that the MPSO is able to solve the
EEG source localization in a real clinical setup.

In this paper, the MPSO method is extended to multi-
dipole EEG source localization. Our main goal is to propose
a novel technique for EEG source localization in the daily
routine clinical application.

II. METHOD
A. Forward problem

The characteristic frequencies of the signals in the kHz
range and below make the capacitive and inductive effects of
the tissue negligible. Therefore, the quasi-static approxima-
tion of Maxwell’s equations for the potential Φ can be used.
If we denote the domain of interest as Ω (with boundary
∂Ω) and let the tissue conductivity be σ, we have Poisson’s
equation

∇ · (σ∇Φ) = ∇ · js in Ω, (1)

subject to the conditions

n̂ · (σ∇Φ) = 0 on ∂Ω, (2)
Φ(xref) = 0. (3)

The source current js (x) = δ(x−x0)M is modeled by a
mathematical dipole at position x0 ∈ Ω with the moment
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M ∈ R3.
The reciprocity principle was introduced by Helmholtz

[22] and then adapted to the EEG problem by Rush and
Driscoll [23] when they proved the applicability of reci-
procity to anisotropic conductors. The concept allows switch-
ing the role of the electrodes and dipole sources. One of
EEG electrodes is used as a common reference for the mea-
surements (ground). We assume that p sources are present
in the system. These sources are defined by its position,
{x1, · · · ,xp} and dipole moment (orientation and amplitude)
{M1, · · · ,Mp}. As we will be using reciprocity, we also
define distributions of electric fields in the domain, E j(x)
for j = 1,2, · · · ,Nelec − 1 where Nelec is number of EEG
electrodes. These are the electric field distributions which are
present in the system when we inject a unit current source
to electrodes i, and withdraw a unit current at the reference
electrode.

The theorem of reciprocity states that

uelec j = α

p

∑
n=1

Mn ·E j(xn). (4)

In this expression, the constant α depends on several factors,
such as whether we use a voltage or a current source to
calculate E j as well as how the channels in the measurement
system are set up. For simulated data in our system, α =
1 (A−1) when a unit current source is used to calculate E j.

For the reciprocity method, (4) holds for all electrodes and
we obtain

uelec =
p

∑
n=1

L(xn)Mn, (5)

which

L(xn) =


E1,x(xn) E1,y(xn) E1,z(xn)
E2,x(xn) E2,y(xn) E2,z(xn)

...
...

...
ENelec−1,x(xn) ENelec−1,y(xn) ENelec−1,z(xn)

 (6)

B. Inverse Problem
In a parametric inverse method, the number of dipoles is

assumed to be fixed and their locations and moments are
chosen such that the potentials at the electrodes, uelec, that
are computed according to (5), approximate the measured
potentials umeas well according to some criteria. Here we
follow the common practice and choose the parameters such
that we have the best fit in least squares sense. For one dipole
we get the following minimization problem

J = min
x∈Ωbrain
M∈Rd

‖ umeas−L(x)M ‖, (7)

where Ωbrain is the brain domain and d the dimension. Since
this is a least squares problem and uelec depends linearly on
the dipole moment it is convenient to separate the parameters
in (7) and solve for the dipole moment M first. Define, for
fixed x ∈Ωbrain,

J(x) = min
M∈Rd

‖ umeas−L(x)M ‖ . (8)

According to the normal equations for linear least squares
problems, optimality is obtained for

Mopt(x) = (LT (x)L(x))−1LT (x)umeas. (9)

Substituting (9) into (8) yields after some manipulation

J(x) =
(
uT

meas[I−L(x)(LT (x)L(x))−1LT (x)]umeas
)1/2

.
(10)

Here the optimization problem is the function of the source
position only, thus the complexity of the inverse problem is
reduced.

III. PARTICLE SWARM OPTIMIZATION
A. Standard Particle Swarm Optimization

The Particle Swarm Optimization concept was first intro-
duced by Kennedy and Eberhart [17], [18] in 1995 based on
the social system behavior such as movement of the school of
birds or the flock of fishes for finding food. Each individual
in the swarm is called a particle. In the original version
particles move according to the following formula:{

Vt+1
i = Vt

i + c1Rand()(Pi−Xt
i)+ c2Rand()(Pg−Xt

i),

Xt+1
i = Xt

i +Vt+1
i .

(11)
where X and V represent the particle position and velocity,
respectively. Pi and Pg are the personal best (pbest) and
global best (gbest), respectively. i represents the particle
index and t is the time step. Rand() denotes a normally
distributed one-dimensional random number with mean zero
and standard deviation one. Parameters c1 and c2 are the
cognitive and social learning rates.

The PSO algorithm introduced by Kennedy and Eberhart
has been proven to be powerful but needs to select various
parameters, such as the maximum velocity coefficient, the
swarm size, the neighborhood size as well as the cognitive
and social learning rates. Moreover, the parameter selection
in a specific problem is not straightforward. The PSO al-
gorithm has a risk to trap in a local minima and lose its
exploration–exploitation ability [24]. In the following section
we describe a modified PSO (MPSO) [19], which can help
to cure the aforementioned drawbacks.

B. Modified Particle Swarm Optimization
In modified PSO (MPSO) [19] we use the concept of

authority mixed with the mutation and EP and apply it
to the particle’s behavior. In this method M particles are
selected among the swarm population by the q-tournament
selection method and then mutated by the EP method [25].
By evaluating the fitness value of all the particles, the
global best position is determined. For each particle, the
nearest elite particle, Pe, is determined by the Euclidean
distance. The velocity and the position of the particles are
updated according to the global best position, the nearest
elite position, and the personal best position.

Moreover, to maintain the exploration ability and increase
the exploitation ability we introduced the concept of author-
ity in the MPSO. The concept of authority means that in
some steps the particles which are closer to the global best
can influence the swarm’s performance and decision more
than other particles. This is because when the gbest particle
is moving close to the minima, it cannot move faster than
its velocity weight which is a small value during the last
iterations. When PSO comes close to a minima (local or
global) it can only find the global one when it has sufficiently
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many particles around gbest. Thus, PSO needs a lot of
iterations to gather enough particles around gbest.

We extract the R = 5 closest particles to the gbest and
let them fly freely based on their memory and knowledge.
This allows the PSO to have more information around gbest
before lots of particles come close to it and stuck with each
other. Now, the velocity update is divided into two parts as

Vt+1
i = wVt

i + c1Rand()(Pi−Xt
i)+ c2Rand()(Pg−Xt

i)

+ c3Rand()(Pe−Xt
i), (12)

where i = 1,2, ...,N−R, c3 and Pe denote the constant and
position of the nearest elite, respectively. Then, the second
part is

Vt+1
r =wVt

r + c1Rand()(Pr−Xt
r) (13)

where Vr, Xr, and Pr are the velocity, position and personal
best of the r-th particle, respectively, for r = N−R+1, ...,N
and w is the inertia weight advised by [26]. The R nearest
particles to gbest are re-selected in each iteration to ensure
that the particles which moved away from the gbest lose their
authority and update their velocity according to (12). The
following parameters are selected for the MPSO coefficients:
w = linear from 0.9 to 0.4, c1 = 0.8, c2 = 0.4 and initial swarm
size = 30, in addition the MPSO uses adaptive swarm size
[27] during its searching progress.

IV. MULTI-DIPOLE SOURCE LOCALIZATION
Theoretically, it would be possible to calculate the ob-

jective function for all combinations of p sources in Ngray
possible locations in the gray matter, i.e.,(

Ngray
p

)
=

Ngray!
(Ngray− p)!p!

, (14)

evaluations. In practice, this is generally not feasible as the
number of gray matter points in the configuration space is
too large and cannot be explored exhaustively. The PSO
is flexible and straightforward to extend to multi-dipole
source localizations. For p source locations, 6p unknown
parameters should be estimated in 3D, i.e., 3p dipole position
parameters in Cartesian space (x,y,z) and 3p dipole moments
(Mx,My,Mz). Thus the i− th particle of the swarm can be
represented by the vector Xi ∈ Rnp and Vi ∈ Rnp, where
n = 1,2,3 is the problem dimension. For n = 3 we get,{

Xi = ((x1,y1,z1), · · · ,(xp,yp,zp),(Mx1 ,My1 ,Mz1), · · · ,(Mxp ,Myp ,Mzp))i,

Vi = ((Vx1 ,Vy1 ,Vz1), · · · ,(Vxp ,Vyp ,Vzp),(VMx1
,VMy1

,VMz1
), · · · ,(VMxp ,VMyp ,VMzp ))i.

(15)
With this configuration for the particles we can now

again use (12) and (13) to minimize the cost function. The
minimization problem (7) then becomes,

J = min
x∈Ωbrain
M∈Rd

‖ umeas−
p

∑
n=1

L(xn)Mn ‖2, (16)

To reduce the unknown parameters we can use the method
explained in Section II-B. For two dipoles with positions
x1 ∈Ωbrain, x2 ∈Ωbrain and orientation M1 ∈R3 the optimal
components M2opt are found in least squares sense as the
solution of the linear equations umeas−L(x1)M1 =L(x2)M2,
i.e.,

M2opt(x) = (LT (x2)L(x2))
−1LT (x2)ũmeas. (17)
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Fig. 1: Position and orientation of the two active spikes,
with the same amplitude equal to 10 µAm and background
sources, 1 µAm, in 2D setup

where ũmeas = umeas−L(x1)M1.

V. MPSO RESULTS
To test the ability of the MPSO to localize multiple

sources, we generate sets of simulated potentials for 30
channel electrodes for two active spike sources placed in both
brain hemispheres in a 2D case, see Fig. 2. The following
conductivities were then assigned to the FE compartments
based on their segmentation labels and the isotropic reference
model [28]: skin = 0.43 S/m, skull = 0.0042 S/m (skull to
skin conductivity ratio of approximately 1:100), CSF = 1.538
S/m, gray matter = 0.33 S/m, and white matter = 0.142 S/m.

The background dipole is fixed at the occipital lobe for
all cases. The two spike sources have the same amplitude
equal to 10 µAm, one with radial direction and the other with
tangential direction. Fig. 2 shows the cost function when only
a single dipole is used to estimate the potential for this test
case. As we can see in Fig. 2 the global minimum is located
10.3 mm from the source in the left hemisphere and 88.4 mm
from the source in the right hemisphere. The relative error
is equal to 0.52 and clearly a single dipole is not enough in
this case.

We ran the multi-dipole MPSO for 100 cases in which
the position of active sources were selected randomly inside
the gray matter. The MPSO had 30 initial particles and
the optimization was stopped if the relative error ≤ 0.08

Fig. 2: The cost function when a single dipole source is used.
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Fig. 3: Localization error for 100 cases (the results are sorted
in ascending order to make the plot easier to interpret).

(this value was obtained when the exact dipole positions
and orientations were selected as input for the optimization
problem). Fig. 3 shows the localization error for single dipole
localization compared to the multi-dipole MPSO localization
for 100 cases.

Table I presents the mean localization and orientation
error for both multi-dipole MPSO and single dipole source
localization done by an exhaustive search. The results in

TABLE I: Mean of the localization and orientation errors for
100 cases.

Multi-Dipole Single Dipole
Source 1 Source 2 Source 1 Source 2

Mean LE ± std (mm) 4.6±1.5 5.8±1.9 12.1±4.3 48.2±23.8
Mean OE ± std (deg) 2.0±1.1 3.4±1.4 8.3±2.3 10.2±5.7

Table I show a significant source localization improvement
compared to the one dipole localization approach. In our
case the head model had 2 879 gray matter points. Thus all
possible unique combinations of the two sources are 4 142
881. The multi-dipole MPSO found the optimal solution with
only 800 evaluations in average, which is 0.019% of the total
number of possible choices.

VI. CONCLUSION
In this paper, the ability of a new optimization method

was tested for multi-dipole EEG source localization. The new
method is a modified version of particle swarm optimization.
The positions and orientations of dipoles are optimized to
obtain the best least squares fit with the measured EEG
signals. The results showed that using multi-dipole MPSO
source localization is a reliable choice when we deal with
a strong multi-active source scenario, since a single dipole
source localization may fail in that case. Future work in-
cludes to apply the proposed method on real EEG signals
generated from two separate sources, such as auditory evoked
potentials.
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