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Abstract— Recent studies have demonstrated decoding of 

lower extremity limb kinematics from noninvasive 

electroencephalography (EEG), showing feasibility for 

development of an EEG-based brain-machine interface (BMI) 

to restore mobility following paralysis.  Here, we present a new 

technique that preserves the statistical richness of EEG data to 

classify movement state from time-embedded low frequency 

EEG signals. We tested this new classifier, using cross-

validation procedures, during sit-to-stand and stand-to-sit 

activity in 10 subjects and found decoding accuracy of greater 

than 95% on average. These results suggest that this 

classification technique could be used in a BMI system that, 

when combined with a robotic exoskeleton, can restore 

functional movement to individuals with paralysis.         

I. INTRODUCTION 

Electroencephalography (EEG) is a method for imaging 
brain activity by measuring the electrical activity of 
pyramidal neurons in the superficial layers of the brain from 
electrodes placed on the scalp. While EEG recordings 
possess high temporal resolution, the potentials are a linear 
combination of many current sources, resulting in poor 
spatial resolution (volume conduction). Yet, the noninvasive 
nature of scalp EEG makes it an attractive candidate for use 
in brain-machine interfaces (BMIs). BMIs have been the 
subject of intensifying research over the past decade [1-3] 
and have been deployed in a wide range of applications, 
including control of computer cursors, powered wheelchairs, 
and assistive robots. BMIs are incorporated into 
rehabilitation therapy to either train the central nervous 
system to produce more normal activity, or to control a 
device that assists movement thereby producing sensory 
input that induces plasticity to restore motor control [2]. 
Finally, BMIs can be used to control prosthetic limbs or 
powered exoskeletons to restore functional mobility to 
amputees or individuals with paralysis.   

The key component of a BMI for restoration of 
movement is the algorithm that translates brain signals into 
useful commands. One approach is to infer limb movement 
from the recorded neural signals. Many techniques have been 
investigated for this decoding task [4] including the Weiner 
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filter, Kalman Filter, unscented Kalman filter, particle filter, 
artificial neural networks, and finite state approaches. A 
majority of these studies have applied these techniques to 
decoding motion of the upper extremity, such as reaching 
and grasping, from invasive neural recording such as 
electrocorticographic (ECoG) or local field potentials [5-7], 
while some studies demonstrate the feasibility of utilizing 
noninvasive EEG for these purposes in humans [8,9]. 
Extension of noninvasive neural decoding to the lower 
extremity offers great potential to BMIs for rehabilitation, 
since recovery of independent mobility after paralysis can 
greatly improve quality of life. Recent work has 
demonstrated the ability to decode lower extremity limb 
motion from scalp EEG [10,11]. While such decoding is 
useful for rehabilitation and motor recovery, individuals with 
paralysis or amputations could benefit from methods that 
classify the desired action in a more discrete fashion. For 
example, a BMI for controlling a robotic exoskeleton that 
restores walking mobility need not decode the exact desired 
trajectory of the limb; instead, the BMI must only decode the 
intent of the user (e.g., stand, walk, turn, stop, etc.). Once 
intent is established, internal controls of the exoskeleton can 
execute the desired movement.  

Here we present a new strategy for EEG classification to 
infer user action from brain activity during sit-to-stand and 
stand-to-sit tasks. We employ a locality preserving 
dimensionality reduction technique coupled with a statistical 
classifier to determine the current state of the user from 
offline analysis of scalp EEG recordings.     

II. METHODS 

A. Classifier Algorithm 

A Gaussian mixture model (GMM) seeks to represent 
arbitrary statistical distributions in the feature space via a 
summation of multiple Gaussian distributions, termed 
components or modes. The shape of the resulting probability 
density function depends on the number of mixture 
components (K), and the mixing weight, mean, and 
covariance matrix of each component. The determination of 
K is critical to successful implementation of GMMs for 
classification. The Bayes information criterion (BIC) has 
been reported as an effective metric for determining K [12].  
Once the value of K has been determined, the other 
parameters of the GMM can be estimated by the expectation-
maximization algorithm [13].   

One drawback for use of GMMs is the size of the 
parameter space that must be learned, which can be 
calculated as K*(1 + d*(d - 1)/2) + K*d, where d is the 
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dimensionality of the data to be fit. It is common to include 
10 lags of past EEG data in the feature matrix for neural 
decoding [10,11].  To fit a GMM with K = 10 components to 
a feature matrix constructed from 32 channels of EEG 
requires learning a parameter space of dimension 6.2 x 10

5
, a 

task which is often impractical given the limited time and 
training data available from EEG studies. Many techniques 
for dimensionality reduction have been evaluated in BMI, 
with the most popular being genetic algorithm (GA), 
principal component analysis (PCA) and linear discriminant 
analysis (LDA) [4]. These methods have shown promising 
results, however these data reduction techniques have some 
limitations. In the case of PCA and LDA, the underlying 
assumption is that class-conditional data are Gaussian. Yet, 
scalp recorded EEG data represent a mixture of millions of 
neural inputs. Thus, it is likely that EEG data recorded for 
the purpose of determining user intent (e.g. sit or stand) will 
be contaminated by other neural activity. Therefore, we 
hypothesize that the statistical distribution of a given class 
will be multimodal, and thus, classifiers such as GMMs are 
well suited to classify user intent from EEG data. Evidence 
from prior studies indicates that utilization of a locality 
preserving dimensionality reduction, such as local Fisher’s 
discriminant analysis (LFDA), improves performance of 
GMMs compared to traditional data reduction techniques 
[12]. LFDA combines LDA with a linear manifold learning 
technique to obtain between-class separation in the reduced 
dimension projection space while preserving the within class 
structure found in the original space. LFDA seeks to find a 
projection that preserves local neighborhood information, 
thereby ensuring that the underlying structure of the data 
distribution is preserved in a lower dimensional subspace. 
This is accomplished by deploying local between-class and 
within-class scatter matrices which are scaled by the distance 
between a given data point and its knn-nearest neighbor (the 
value of knn must be optimized for a given data set). These 
local scatter matrices are used to define Fisher’s ratio. The 
transformation matrix Tlfda, which projects the original data 
set into the reduced dimensional space, is then found by 
maximizing a modified form of Fishers ratio as in [12].   

B. Experimental Setup and Data Collection  

Ten healthy adults (6 male, 4 female) with no history of 
neurological disease participated in the study after giving 
informed consent.  This study protocol was approved by the 
Institutional Review Board at the University of Houston.  
Participants were asked to complete sit-to-stand and stand-
to-sit tasks as follows.  Participants were asked to stand 
quietly in an upright posture for 15 seconds. Next, an audio 
cue (beep) was given at which point the participant 
transitioned from the standing to a seated posture. The seated 
posture was held for a period ranging from 3-10 seconds, 
after which a second audio cue was given to initiate the 
transition from sit-to-stand. The standing posture was held 
for 3-10 second interval, at which point the process was 
repeated until 20 transitions (10 of each) were completed.   

Time-locked kinematic, electromyography (EMG), and 
EEG data were collected simultaneously using a previously 
developed data collection system [14]. Inertial sensing units 
(APDM, Inc., Portland, OR) containing triaxial 

magnetometers, accelerometers, and gyroscopes sampled at 
128 Hz were mounted bilaterally on the foot, shank, and 
thigh, and on the lower back, sternum, and head. Surface 
EMG (Biometrics, Ltd, Ladysmith, VA) was recorded at 
1000 Hz bilaterally from the tibialis anterior, gastrocnemius, 
biceps femoris, and vastus lateralis. Whole scalp, active 
electrode, 64-channel EEG (Brain Products, GmbH, 
Morrisville, NC) were collected at 1000 Hz and labeled by 
the 10-20 international system.   

C. Signal Preprocessing  

All data analysis, classifier optimization and evaluation 
were performed off-line using custom software in Matlab 
(Mathworks, Natick, MA). Peripheral EEG channels 
susceptible to eye blinks and facial/cranial muscle activity 
were removed for offline analysis (all channels labeled Fp, 
AF, FT, T, TP, O, and P7-8, PO7-10). Time traces of the 
remaining channels were visually inspected to assure no 
irregularities were present. EEG signals were decimated to 
100 Hz and then band pass filtered with a zero phase, 3rd

 
order Butterworth filter from 0.1-2 Hz. The EEG data were 
then standardized by channel by subtracting the mean and 
dividing by the standard deviation. Finally, a time-embedded 
feature matrix was constructed from 10 lags, corresponding 
to 100 ms in the past, of EEG data. The embedded time 
interval was chosen based on previous studies demonstrating 
accurate decoding of lower extremity kinematics from EEG 
[10,11]. The feature vector for each time point was 
constructed by concatenating the 11 lags (the current time 
point plus the 10 prior) for each channel into a single vector 
of length 11 x N, where N is the number of EEG channels. 
To avoid the problem of missing data, the feature matrix was 
constructed starting at the 11th

 EEG sample of the trial.  

EEG data are used to classify the current motor activity 
of the participant into one of three classes: quiet, stand-to-sit, 
or sit-to-stand. The true state of the participant was assessed 
from the linear envelope of the lower extremity EMG. To 
attain the envelope the EMG data was detrended, band pass 
filtered (15 - 300 Hz), rectified, and low pass filtered (3 Hz). 
A simple threshold detection algorithm identified the class as 
0 (quiet), 1 (stand-to-sit), or 2 (sit-to-stand) based on the 
linear envelope. Classes 1 and 2 were identified as time 
periods when the linear envelope value exceeded three 
standard deviations from the mean of the quiet phase value.   

D. Classifier Optimization 

The parameters of the LFDA-GMM classifier (knn and 
the dimensionality of the projected subspace (r)) were 
optimized for each subject using a set of training and testing 
data randomly selected from each class. This optimization 
was performed using a grid search technique while varying 
the values of knn and r from 1-99 and 1-100, respectively. 
Mutually exclusive training and testing data sets for 
optimization were randomly selected from each class.  For 
the optimization, the number of samples selected from each 
class was equal for both training and testing (50% of the 
least populated class). The LFDA-GMM classifier was then 
trained and tested at all points of the parameter space for knn 
and r. The optimal parameter set for each subject was 
selected as the one that produced the highest overall 
accuracy from the testing data set. 
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D. Classifier Performance 

The performance of the LFDA-GMM classifier with the 
optimal parameter set was analyzed for each subject by 
randomly selecting a subset of data points to serve as the 
training set. The number of samples in the training subset 
was equal to 20% of the least populated class. After training, 
the LFDA-GMM classifier was then tested on all data 
remaining in the set for that given subject. To avoid training 
bias, the experiment was repeated 20 times and the accuracy 
reported is the average classification accuracy. We also 
investigated the effect of the size of the training data set by 
varying the size of the training set between 10%-90% of the 
least populated class.   

III. RESULTS 

A representative optimization surface of overall classifier 
accuracy as a function of parameters knn and r is given in Fig. 
1. The contour was similar for all subjects. Accuracy 
plateaus at moderate r values (~15-40). In some subjects, 
accuracy remained nearly constant for increasing values of r 

while in other cases accuracy dipped slightly as r increased 
beyond 40.  Generally, the value of knn had little impact on 
accuracy beyond a peak at ~11. The optimized LFDA-GMM 
parameters for each subject are given in Table I. The number 
of components (K), estimated from BIC, demonstrate that 
stand-to-sit (class 1) and sit-to-stand (class 2) distributions 
are multi-modal for at least half of the participants.  

Fig. 2 shows the average classification accuracy with the 
optimal parameter set for each subject.  The mean accuracy 
across the ten subjects was 95.2 ± 1.3%.  Fig. 3 shows a 
representative example of the LFDA-GMM classifier 
performance for 65 seconds of the sit-to-stand and stand-to-
sit experimental protocol, including the true class, predicted 
class, and EMG envelope of the left vastus lateralis.   

IV. DISCUSSION 

Previous studies have shown promising results for 
decoding of lower extremity kinematics during walking 
activity [10,11]. These studies and others from upper 
extremity [6-9] demonstrate that critical information 
pertaining to limb motion can be extracted from smooth 
amplitude modulated brain waves in the delta band (0.1 – 4 
Hz). Collectively, these studies show that limb motion can be 
reconstructed from EEG. Such reconstruction could be used 
as a control signal for a noninvasive BMI for restoration of 
movement. However, we postulate that state-based EEG 
classifiers, serving as a BMI with a robotic exoskeleton or 
other assistive device, can provide functional recovery of 
movement to impaired individuals. This study shows that 
time-domain EEG signals from the lower delta band can be 
effectively used to classify movement state in healthy 
individuals with a very high level of accuracy, providing 
impetus for its use in a BMI.   

Our underlying hypothesis for this study was that because 
spatially coarse EEG signals are combinations of many 
neural sources, the within-class statistical distribution of data 
can be multi-modal, and thus a classification scheme that can 
handle such non-Gaussian distributions will accurately 
classify the movement state. The results presented support 
this hypothesis. Optimization of classifier parameters for 
each subject is critical. For every subject peak accuracy was 
attained in a reduced dimensional space of less than 25% of 
the original, indicating LFDA was able to significantly 
reduce dimensionality while preserving the statistical 
features necessary for accurate classification. Furthermore, 
the GMMs for the stand-to-sit (class 1) and sit-to-stand (class 
2) classes contain more than one mixture component for over 
half the subjects, supporting our assumption of multi-modal 
within class data.  

In a similar manner as previous studies [15], we 
introduced a control group during classifier optimization to 

 
Fig. 1: A representative example (S5) of overall LFDA-

GMM accuracy for optimization of parameters r and knn.  

 
Fig. 2: Average (n = 20) LFDA-GMM classifier accuracy 

across subjects.   

TABLE I 

OPTIMAL PARAMETERS AND NUMBER OF MIXTURE COMPONENTS 

BY SUBJECT  

Subject knn  
Reduced 

Dimension (r) 

Mixture Components (K) 

Class 0 Class 1 Class 2 

S1 41 19 1 2 1 

S2 11 21 2 2 2 

S3 57 15 1 2 3 

S4 97 37 1 1 1 

S5 35 25 1 3 7 

S6 25 43 1 2 1 

S7 33 39 1 1 1 

S8 37 71 1 1 3 

S9 23 35 1 1 1 

S10 29 45 1 1 1 
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strengthen our conclusion regarding classification accuracy.  
The control group was created by randomly shuffling 
original EEG data within each channel for each subject.  The 
highest overall accuracy for LFDA-GMM optimization was 
significantly higher for original EEG than control (p < 10

-6
). 

Across subjects, the maximum accuracy during optimization 
for the control EEG was 35.5 ± 5.8 %, which does not 
compare favorably to chance value of 33%. 

We also found that training set size had little impact on 
classifier performance. Even when trained using a set of 
length equal to 10% of the least populated class (comprising 
approximately 2% of the total data set), mean accuracy was 
88.7 ± 6.4 % across subjects. The length of the 10% training 
set was 7.8N on average, where N is the size of the original 
feature space (number of EEG channels). This finding agrees 
with previous studies of LFDA-GMM classifiers that found 
similar accuracy levels at the same training abundance [12]. 
Furthermore, these high accuracies with relatively low 
number of training samples demonstrate robustness of the 
LFDA-GMM classifier to EEG artifacts since the training 
data are taken randomly in time from each class.   

In this study, LFDA-GMM demonstrated high accuracy 

for prediction of current motor state during one experimental 

session. For real time application, within-class statistical data 

distribution can be expected to vary between sessions, and 

thus the classifier may need to be optimized before each use. 

Despite feature reduction by LFDA, the optimal parameter 

set (Table I) can still result in a relatively large learning 

space for the GMMs as described in section II. This is a 

potential hindrance for real-time deployment of this 

classifier. However, careful examination of subject specific 

surfaces like the one in Fig. 2 shows that gains in accuracy 

level-off at values of approximately 20 and 11 for r and knn, 

respectively, with only small gains in accuracy for 

parameters exceeding these levels. These results suggest 

online application of the LFDA-GMM classifier to be 

reasonable. Future work will focus on its implementation in 

combination with a robotic exoskeleton [16]. 
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Fig. 3: Representative example of LFDA-GMM classification of user action from EEG: quiet (0), stand-to-sit (1), or sit-to-

stand (2). Predicted and true states of the participant are shown with the EMG of left vastus lateralis (VL) as a reference.   
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