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Abstract—Improving community mobility is a common 

goal for persons with stroke. Measuring daily physical 

activity is helpful to determine the effectiveness of 

rehabilitation interventions.  In our previous studies, a novel 

wearable shoe-based sensor system (SmartShoe) was shown 

to be capable of accurately classify three major postures and 

activities (sitting, standing, and walking) from individuals 

with stroke by using Artificial Neural Network (ANN). In this 

study, we utilized decision tree algorithms to develop 

individual and group activity classification models for stroke 

patients. The data was acquired from 12 participants with 

stroke. For 3-class classification, the average accuracy was 

99.1% with individual models and 91.5% with group models. 

Further, we extended the activities into 8 classes:  sitting, 

standing, walking, cycling, stairs-up, stairs-down, 

wheel-chair-push, and wheel-chair-propel. The classification 

accuracy for individual models was 97.9%, and for group 

model was 80.2%, demonstrating feasibility of multi-class 

activity recognition by SmartShoe in stroke patients. 

I. INTRODUCTION 

Stroke is a leading cause of disability among adults in the 
US [1]. More than 4 million people in the U.S. suffer from 
stroke and the nation spends more than $10 billion each 
year for visiting post-stroke rehabilitation experts [2]. The 
World Health Organization’s International Classification of 
Functioning, Disability, and Health classified the effects of 
stroke into problems in the “body structure and function 
dimension” and in the “activity and participation 
dimension” [3]. Over 50% of the individuals who have 
experienced a stroke have difficulty in walking and around 
75% of them have difficulty in performing basic activities 
of daily living [4]. Recovering walking ability and 
increasing levels of activity and mobility are important 
goals of the rehabilitation of post-stroke patients [5]. 
Therefore, it is very important to monitor physical activity 
for people with stroke. Such monitoring can help to 
determine the effectiveness of rehabilitation interventions 
as well as to provide behavior-enhancing feedback. 

The performance of patients with stroke in clinics or in 
research labs may not truly reflect patients’ real-life 
performance [6][7] . Therefore, there is a strong need for 
systems that can monitor physical activities in free-living 
conditions for stroke patients [8]. Modern sensor 
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technologies and signal processing techniques make this 
possible. There are various sensor-based systems that can 
help with monitoring activities in patients with stroke.  An 
accelerometer was worn on the wrist to monitor the amount 
of usage of the affected upper extremity (UE) in people 
after stroke in [9]. A Stroke Upper Limb Activity Monitor 
combines accelerometers placed on the lower extremities 
(LE), trunk, and UE with electrogoniometers on both 
elbows [10]. Saremi et al. examined the reliability and 
validity of the Intelligent Device for Energy Expenditure 
and Activity (IDEEA) with 5 bi-axial accelerometers [11] 
for hemiparetic subjects. However, most of these systems 
are too obtrusive for everyday use. Moreover, many people 
with stroke have limited walking ability [12]. Therefore, 
there is a need to better explore the use of sensors and to 
measure a wider range of activities of people with stroke.  

      We developed an unobtrusive wearable shoe-based 
sensor system (SmartShoe) for physical activity 
monitoring. It combines a tri-axial accelerometer mounted 
on the heel of each shoe and force sensitive resistors (FSR) 
embedded in insoles [13]. In our previous studies, the shoe 
sensor system with decision tree algorithm for activity 
classification was used on healthy subjects, but the 
performance for data from stroke patients was never 
explored [13]. Also, this shoe sensor system could 
accurately identify the 3-class postures (i.e. sitting, 
standing, and walking) in people with stroke by using 
artificial neural network (ANN) [6] with classification 
accuracy of the ANN for individual participants from 
93.1% to 99.9% and the combined classification accuracy 
approximately 97.2%.   

      Although ANN could achieve high classification 
accuracy, the model to make decisions is a vast network of 
neurons, thus the computation is not easy to interpret. Also 
the algorithm needs floating point operation, therefore, it is 
not well suited for embedded devices with no floating point 
support. There is a need to utilize algorithms that can be 
simpler to interpret and easier to be embedded into a 
chip—such as a mobile phone or even Programmable 
System on Chip (PSOC). In this study, we utilized decision 
tree algorithms as a simpler alternative to ANN. Further, we 
extended the study to 8-classes (i.e. sitting, standing, 
walking, cycling, stairs-up, stairs-down, wheel-chair-push, 
and wheel-chair-propel).  

II. METHODS 

A. Wearable shoe sensors and data collection 

The version of SmartShoe sensor system used in this 
study included pressure sensors and accelerometers. The 
pressure sensors contained five FSRs integrated in a 
flexible insole in each shoe, and the accelerometer was 
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positioned on the back of each shoe. The battery, power 
switch, and wireless board were installed on a rigid circuit 
board glued to the back of the shoe. Pressure and 
acceleration data were sampled at 25 Hz, which has been 
proved as an applicable rate, by a 12-bit A/D converter and 
then sent over Bluetooth to a smart phone for off-line data 
processing [14]. Each single sample of data from the shoe 
was represented by a vector S = {AAP, AML, ASI, PH, P5M, 
P3M, P1M, PHX}. The meanings of the sensor readings and 
their corresponding representations in our decision tree 
algorithms are shown in Table I.  

TABLE I.  SENSOR REPRESENTATIONS  

Sensor 

signals 

Descriptions Notations 

in 

decision 

trees 

AAP Acceleration in the Anterior-posterior direction acc1 

AML Acceleration in the Medial-lateral direction acc2 

ASI Acceleration in the Superior-inferior direction acc3 

PH Pressure applied on the FSR under the heel  pre1 

P5M Pressure applied on the FSR under the fifth 

metatarsal head  

pre2 

P3M Pressure applied on the FSR under the third 

metatarsal head 

pre3 

P1M Pressure applied on the FSR under  the first 

metatarsal head 

pre4 

PHX Pressure applied on the FSR under the hallux  pre5 

 

B. Description of participants and activities  
Data collection was performed on twelve participants 

with stroke. Eight participants had a middle cerebral artery 
stroke, three had brainstem stroke, and one had a cerebellar 
stroke. They were recruited from a local outpatient physical 
therapy clinic. Inclusion criteria were as follows: at least 3 
months post-stroke, able to walk at home and/or 
community without physical assistance, able to stand 
without physical assistance for more than 60 seconds, able 
to transition from sitting to standing from a standard height 
chair without physical assistance [6]. Subjects were 
wearing SmartShoe for the duration of data collection. 
Pressure and acceleration data were collected in 8 posture 
and activity groups: sitting, standing, walking, ascending 
stairs, descending stairs, cycling on a stationary bike, being 
pushed in a wheelchair, and propelling a wheelchair.  

TABLE II.  DESCRIPTION OF THE SIX POSTURE/ACTIVITIES CLASSES 

Activities Description  

Sitting (‘sit’) 

(4 ADLs) 

Reading a magazine 

Working on a computer 

Simulated dating and drinking 

Sitting comfortably 

Standing (‘stand’) 

(4 ADLs) 

Folding laundry 

Donning/Doffing a coat 

Placing objects in a cupboard that is approximately 

head level 

Standing comfortably 

Walking (‘walk’) 

(2 trials) 

Walking at their self-selected pace 

Walking at their fastest safe pace 

Ascending stairs 

(‘stairs_up’) 

Subjects go upstairs 

Descending stairs 

(‘stairs_down’) 

Subjects go downstairs 

Cycling Subjects perform riding a stationary bike 

Pushed in a 

wheelchair 

(‘wc_push’) 

Someone pushing the subject when both their feet are 

up on a footplate, arms on the arm rests of the wheel 

chair 

Propelling a 

wheelchair 

(‘wc_propel’) 

The subject propelling the wheel chair using the 

unaffected arm and leg, with the affected leg up on a 

footplate 

Data were collected for different activities in multiple 
positions to better mimic real-life conditions. For sitting 
and standing, participants performed activities of daily 
living (ADLs) while in these postures. Participants 
performed each activity in the sitting and standing 3 times 
for a minute. In addition to perform ADLs in sitting and 
standing activity, participants performed walking activity at 
two different paces, self-selected and fastest safe pace. 
They performed three 2-minute walk trials at each pace. 
During the data collection process, all subjects were 
supervised by a physical therapist for safety. The order in 
which each position trial was performed was randomized 
by means of a random number generator. The description of 
the eight major posture/activity classes is shown in the 
above table, Table II. 

 B. Feature computation 
Feature computation was performed on the data 

readings from every continuous two second disjoint 
processing windows. The features were mean, standard 
deviation, entropy [13], variance, maximum value, Number 
of Mean Crossings (NMC), and Mean Absolute Deviation 
(MAD). Therefore, the number of computed features in 
every two seconds will be 7 features / sensor * 8 sensors = 
56 features. In our experiment, feature computation was 
performed in MATLAB. However, we always rounded the 
feature values to integers for potential further use in 
embedded microcontrollers.   

C. The classifier—C5.0 decision tree 
Decision Tree is a hierarchical model that recursively 

separates the input space into class regions. The result is a 
tree-like structure, which composes of decision nodes and 
leaves. Each node has a test function that determines which 
branch is taken for the next step. This process is repeated 
until one of the leaves is reached and therefore a decision is 
made. Iterative Dichotomiser 3 (ID3) algorithm, C4.5 
algorithm and C5.0 are all implementations of decision tree 
algorithms [15]. 

In this study, we firstly split the dataset into two-second 
segments. Then we computed features for each data 
segment. We randomly selected half of the feature vectors 
for training and half for validation. After generating a 
decision tree from training feature vectors, we computed 
the class labels for each testing feature vector and got 
validation results. The program was written in C 
programming language. Figure 1 shows the procedure of 
how this experiment was performed.  

 

Figure 1.  Data processing procedure with decision trees. 

First, we built individual models and group models for 
the 3-class classification of posture and allocations. Then, 
we performed the same procedure for the 8-class of 
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activities. Individual models performed training and 
validation on the same experimental subject. The individual 
models were the best fit to the individual traits and thus 
represented the baseline of accuracy. However, individual 
models are also more prone to over fitting. The group 
models were developed using Leave-One-Out 
cross-validation. The group models were trained on a 
dataset gathered from multiple subjects and therefore 
enabled a subject-independent classification. 

III. RESULTS 

For the training and validation of the 3-class 
classification, Figure 2 shows a decision tree structure 
obtained from the individual model built for Subject 1. The 
branches are the computed features from the sensor 
readings. The thresholds are obtained from the training 
process. The tree leaves are the classification results.  

Decision tree: 

entropy_acc2 > 10257: walk (196) 

entropy_acc2 <= 10257: 
: . . . mean_pre2 <= 125: sit (176) 

        mean_pre2 >125: 

        : . . . standard deviation_pre2 > 48: stand (153/2) 
                standard deviation_pre2 <= 48: 

                : . . . mean_pre4 <= 1266: stand (20) 

                        mean_pre4 >1266: 
                        : . . . mean absolute deviation_pre4 <= 54: sit (12) 

                                mean absolute deviation_pre4 >54: stand (2) 

 

Figure 2.  Decision tree generated for the classification for 3-class 

individual model for Subject 1. 

In Figure 2, the connection nodes (branches) are 
displayed as feature names followed by sensor names. The 
sensor names are shown in Table I. The first three lines of 
the decision tree can be read as: if the entropy of the 
acceleration in the medial-lateral direction is greater than 
10,257, the activity is “walk”. If not, while the mean of the 
pressure applied on the FSR under the fifth metatarsal head 
is not greater than 125, the activity is classified as “sit”. 
Among all the feature vectors, there are 196 vectors being 
classified as “walk” and 176 vectors being classified as 
“sit”. 

Table III shows the attribute usages in percentage in the 
decision tree above. It is obvious that not all features are 
involved nor all sensors are used. Table IV shows the 
number of features and sensors that were used for each 
subject in individual models. There are 56 different features 
and 5 different sensor signals. The number of features and 
sensors that involved in the classification is much less than 
the total. Table V shows the classification accuracy for the 
3-class activities in the individual models and the group 
models. A cumulative confusion matrix for the 3-class 
classification in group models is shown as Table VI. 

TABLE III.  ATTRIBUTE USAGE FROM THE DECISION TREE 

 

Attribute name Attribute usage 

Entropy_acc 2 100% 

Mean_pre 2 65% 

Standard deviation_pre 2 33% 

Mean_pre 4 6% 

Mean absolute deviation_pre 4 3% 

TABLE IV.  FEATURES AND SENSORS USED IN CLASSIFICATION FOR 

EACH SUBJECT  

Subject S 1 S 2 S 3 S 4 S 5 Average Total 

N(features) 5 5 2 2 2 3 56 

N(sensors) 3 2 2 2 2 2 5 

TABLE V.  CLASSIFICATION ACCURACY FOR 3-CLASS ACTIVITY  

Subject S 1 S 2 S 3 S 4 S 5 Average 

Individual 

Model 

Accuracy 

 

98.6% 

 

98.2% 

 

99.3% 

 

99.8% 

 

98.8% 

 

99.1% 

Group 

Model 

Accuracy 

 

94.4% 

 

97.9% 

 

72.5% 

 

98.8% 

 

94.1% 

 

91.5% 

TABLE VI.  CUMULATIVE  CONFUSION MATRIX FOR THE 3-CLASS 

GROUP MODELS. 

                 Predicted 

        Actual  
 

sit 

 

stand 

 

walk 

   

     Recall 

sit 1763 48 10      0.968 

stand 10 1715 45 0.969 

walk 40 307 1580 0.820 

Precision 0.972 0.828 0.966 0.917 

 

Further, we extended the 3-class activity models to the 
8-class activity models. A sample decision tree for the 
individual model is shown in Figure 3.  

 

Decision tree: 

 

mean_acc2 <= 1596: walk (181) 
mean_acc2 > 1596: 

: . . . mean absolute deviation_acc2 > 48: 

        : . . . mean_pre5 <= 627: 
        :       : . . . num of mean crossing acc1 <= 7: sit (3) 

        :       :       num of mean crossing acc1 >7: wc_propel (44) 
        :       mean_pre5 >627: 

        :       : . . . mean absolute deviation_pre5 <= 429: bike (44) 

        :               mean absolute deviation_pre5 >429: 
        :               : . . . max_acc3 <= 2653: stairs_down (9/1) 

        :                       max_acc3 > 2653: stairs_up (4) 

        mean absolute deviation_acc2 <= 48: 
        : . . . mean_acc3 <= 1963: wc_push (46) 

                mean_acc3 >1963:  

                : . . . mean_pre2 <= 116: sit (188) 
                        mean_pre2 > 116: 

                        : . . . num of mean crossing_acc1 > 6 sit (5/1) 

                                num of mean crossing_acc1 <= 6: 
                                : . . .variance_pre2 > 571 stand (160/4) 

                                       variance_pre2 <=571: 

                                       : . . . max_pre4 <=1212: stand (6) 
                                               max_pre4 >1212: sit (6) 

 

Figure 3.  Decision tree generated for classification for 8-class 

individual model for Subject 1. 

      The classification results for the 8-class are shown in 
Table VII. The cumulative confusion matrix for the group 
model is shown in Table VIII. 

TABLE VII.  CLASSIFICATION ACCURACY FOR 8-CLASS ACTIVITIES  

Subject S 1 S 2 S 3 S 4 S 5 Average 

Individual 

Model 

Accuracy 

 

96.5% 

 

97.4% 

 

99.8% 

 

97.2% 

 

98.4% 

 

97.9% 

Group 

Model 

Accuracy 

 

87.5% 

 

91.1% 

 

64.7% 

 

82.2% 

 

75.5% 

 

80.2% 
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TABLE VIII.  CUMULATIVE CONFUSION MATRIX FOR 8-CLASS GLOBAL 

MODELSSAME COMMENT AS PREVIOUS TABLE 

                  

Predicted 

 

Actual 

sit stand walk bike stairs 

_up 

stairs 

_down 

wc_ 

push 

wc_ 

propel 

Recall 

sit 17

01 

36 9 13 0  1 1 60 0.93 

stand 11 1574 19 71 11 3 2 0 0.93 

walk 1 72 1326 4 67 319 1 16 0.73 

bike 5 3 23 325 0 0 1 2 0.90 

stairs_up 1 14 18 5 16 5 0 0 0.27 

stairs_down 1 10 32 5 5 9 0 0 0.15 

wc_push 10 3 0 0 0 0 323 88 0.76 

wc_propel 12

1 

24 21 0 0 2 204 78 0.17 

Precision 0.9

2 

0.91 0.92 0.77 0.16 0.03 0.60 0.32 0.80 

 

For the 8-class individual models, the classification 
accuracy is still acceptable for real-life applications. For 
some activities in the group model, the classification 
accuracy is not high, and analysis is given in discussion. 

IV.     CONCLUSION AND DISCUSSION 

  In this study, we utilized decision tree algorithms for the 
classification of postures and activities captured by 
SmartShoe from stroke patients. For the main postures and 
activities, the subjects performed activities in different 
positions to mimic situations when the subjects are in their 
home and community. This demonstrates that a 
combination of the SmartShoe and the decision tree 
algorithms can accurately measure postures and activities 
for people with stroke when they perform common ADLs 
or perform mobility tasks. 

      Comparing with ANN, decision tree algorithms can be 
easily interpreted with real-life meaning, especially when it 
works with the feature computation. The algorithms are fast 
as well and also give a direct approach to simplify feature 
computation and sensor usage. From Figure 2 and Figure 3, 
it is found that the tree structures are not complicated for 
three class or eight class activity models. Table IV shows an 
example of simplification of features and sensors. The 
whole process of decision tree’s decision-making process 
does not need any floating-point operation, which ANN 
cannot avoid. Since the tree structures are simple, and the 
computation does not need floating point operation, the 
decision tree algorithms in our study have a great potential 
to be embedded into mobile devices and even sensor chips.  

      The average classification accuracy for the 3-classes 
of activities (sit, stand, walk) is 99.1% for individual 
models and 91.5% for group models. The average 
classification accuracy for the 8-classes of activities is 
97.9% for individual models and 80.2% for group models. 
The classification accuracy is lower than that for healthy 
subjects, but is still acceptable. Table VIII shows high 
misclassification rate for “stairs_up” and “stairs_down”. A 
possible reason is that the sample sizes for these activities 
are not as big as the others. Thus, the training process may 
not provide enough information for the algorithms to learn 
the data. A large number of “wc_propel” segments are 
misclassified as “wc_push”. One possible reason is that to 
keep consistency of our previous study with decision tree 
and to keep the features simple, we used only data from one 
shoe in the algorithm.  Therefore, when the activity is not 
symmetrical, such as “wc_propel”, misclassification may 
occur. We may consider using more features in our future 
studies. 

      In conclusion, decision tree algorithms and SmartShoe 
show a capability of measuring postures and activities of 
stroke patients as they perform common ADLs and 
mobility tasks. Future work includes exploring more 
effective features for distinguish particular activities, using 
pruning methods to simplify the tree structures, and 
embedding the algorithms into mobile devices and even 
sensor chips for real-time applications.  
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