
 

  

Abstract—In this study, we investigated three measures 

capable of detecting absence seizures with increased sensitivity 

based on different underlying assumptions. Namely, an 

information-based method known as Approximate Entropy, a 

nonlinear alternative (Order Index), and a linear variance 

analysis approach. The results on the long-term EEG data 

suggest increased accuracy in absence seizure detection 

achieving sensitivity as high as 97.33% with no further 

application of any sophisticated classification scheme.  

I. INTRODUCTION 

PILEPSY is the second (next to stroke) most common 

neurological disorder affecting approximately 1% of the 

world’ s population. Among the different kind of seizures, 

absence or petit mal seizures are brief, generalized epileptic 

seizures of sudden onset and termination, characterized by 

generalized spike-and-slow wave discharges leading to 

consciousness impairment. Clinical manifestation includes 

interruption of ongoing activities, a blank stare, possibly a 

brief upward rotation of the eyes, speech slowing or 

interruption, walking interruption, etc. The attack lasts from 

a few seconds to half a minute, and evaporates as rapidly as 

it commenced. Electroencephalography (EEG) still remains 

the main diagnostic modality for absence seizures, even if it 

is often combined with MRI mostly to rule out false 

diagnosis related to brain tumor or stroke. When findings in 

the EEG are dubious, the neurologist needs to assess the 

clinical image through synchronized Video-EEG 

monitoring. Recently the automatic analysis of the video 

from recorded seizures has been reported in order to quantify 

the clinical image and propose video-based seizure detection 

methods [1]. However, visual seizure detection of long-term 

EEG is a very tedious and time-consuming that has not yet 

reached the reliability point to allow clinical translation. On 

the contrary, automated analysis of epileptic EEG signals, 

especially during the last couple of decades, has been proved 

very efficient in facilitating epilepsy diagnosis and long-term 

EEG seizure detection.  
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In this direction, numerous methodologies addressing 

childhood epilepsy have been proposed assessing 

nonparametric and parametric techniques, such as wavelets 

and ARMA techniques [2], as well as multivariate linear and 

nonlinear approaches [3]. Although those studies accomplish 

very promising results they are not addressing in particular 

the absence seizure syndrome and fail to achieve optimal 

results. In this work, we focus on absence seizures and test 

various detection algorithms, in order to select the most 

promising ones based on their performance in terms of 

accuracy, sensitivity, specificity and applicability in the 

clinical practice. The algorithms tested include bivariate 

synchronization measures: Phase Locking, Nonlinear 

Interdependence and Cross-Correlation [3], and univariate 

measures: Approximate Entropy (ApEn) [4], Ordinal Pattern 

Analysis-Order Index (OI) [5] and Multiscale Variance 

Analysis (MVA). Out of these approaches we further 

investigate ApEn, OI and MVA, since they were found to 

perform best. The first reflects an information-based 

measure, the second a nonlinear one and the latter a linear 

alternative. All presented measures are based on different 

underlying assumptions discussed in section IV. 

II. METHODS 

A. Data acquisition and analysis 

The EEG signals used in this work arise from 8 patients 

with epilepsy, 4 males and 4 females, aged between 2 and 10 

years. Surface EEG was recorded from all patients during 

routine long-term Video-EEG monitoring sessions at the 

University General Hospital of Heraklion. Informed consent 

for usage of the EEG for research purposes was obtained 

from the patient’s parents. A neurologist expert identified 

epileptic seizures and all of them were classified as absence-

like generalized seizures. EEG signals were recorded from 

21 electrodes of the 10/20 International montage that were 

placed as follows: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, 

C4, T4, T5, P3, Pz, P4, T6, A1, A2, O1, O2. Subjects were 

grounded with an electrode located between Fp1 and Fp2 on 

the subject's forehead. 75 artifact-free segments, containing 

seizures, were used in the analysis [7], and 73 segments of 

normal seizure-free segments of 5s were selected in order to 

check the method's power in detecting false positives.  

B. Approximate Entropy (ApEn) 

ApEn was introduced as a quantification of regularity in 
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sequences and time series data, initially motivated by 

applications to relatively short, noisy data sets [4]. 

Approximate entropy represents the predictability of future 

values in a time series on the basis of previous values, with 

larger values corresponding to more complexity or 

irregularity in the data. Given N data points from a time 

series X(n)={x(n)}={x(1), x(2),., x(N)}, the ApEn value is 

calculated through the following steps: 

1. The vector sequences Xv(1), Xv(2),…, Xv(N-m+1), are 

formed defined by Xv(i)={x(i), x(i+1)…, x(i+m-1)}, which 

represent m consecutive values, commencing with the i
th

 

point. 

2. The distance between Xv(i) and Xv(j) is calculated, defined 

by 
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with r representing the noise filter level. 

Then, we estimate the parameters Ci
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 as, 
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ApEn measures the logarithmic likelihood that runs of 

patterns that are close (within r) for m contiguous 

observations remain close (within the same tolerance width) 

on subsequent incremental comparisons. 

Various parameters are involved in the calculation of 

ApEn that can alter the results. Except embedding dimension 

(m), noise filter level (r), and data length (N), there is the 

decision whether the standard deviation used in noise filter 

level would be calculated from the original data series or 

from the individual selected EEG segments. In addition, the 

number of consecutive samples with ApEn values below a 

threshold, in order for a segment to be characterized as a 

seizure, is of paramount importance, as well as the threshold 

value itself. Even though these parameters are critical in 

calculating ApEn, there is no specific methodology for their 

optimal determination. Most of research works related to 

ApEn use the parameters described in [4] as a rule of thumb. 

However, as signals of different sources and pathologies can 

have quite different properties, these parameters should be 

determined, based on each specific use.  

C. Order Index (OI) 

The order index is a measure that can quantify the degree 

of order of a non-stationary time series, which makes it 

suitable for the analysis of the inherently non-stationary 

EEG signals. It can be calculated through an ordinal time 

series analysis, which was first proposed by Bandt and 

Pompe [8]. According to this approach, given a scalar time 

series 
1 2
, , ,

N
x x x!  an embedding procedure forms a vector 
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numbers, there will be m! possible permutations #, or also 

called ordinal patterns. If ( )C !  is the number of occurrences 

of #, the relative frequency of each ordinal pattern # is 

calculated by ( ) ( ) / ( ( 1) )p C N m! ! "= # # , which can be re-

sorted in descending order, thus yielding the rank-frequency 

distribution ( )
R

p ! . 

 Ouyang  et al. in [5] introduce a measure called order 

index (OI), which quantifies the degree of order (non-

randomness) of an EEG time series. To this end, a surrogate 

time series can be generated by random shuffling of the 

original time series, thus maintaining the same distribution 

of the original data, while destroying their ordinal patterns. 

Assuming that any ordinal index has the same probability of 

occurrence in the shuffled data, the order index is defined: 

 

!
2

1

!/ ! 1 ( ( ) )
i

m

m R e

i

OI m m p p!
=

= " "#  (6) 

where ( )
iR

p !  represents the rank frequency of the EEG 

series and {1/ , ,1/ }
e
p N N= !  represents the uniform 

distribution. Low values of the order index indicate more 

noisy and random data, while higher values indicate EEG 

data with more regular and deterministic information.  

In the current study, the order indices of short overlapping 

windows of the EEG recordings were calculated using Eq. 

(7). The embedding dimension was chosen as the minimum 

that satisfies the condition ( 1)!N m! + , in order to allow 

every possible ordinal pattern of this dimension to occur in a 

time series of length N (satisfying ! ( 1)m N m !" # # ), as 

well as to avoid undersampling (satisfying N>>m!+(m-1)") 

[9]. A threshold was applied to detect possible seizure 

activity, using the procedure described in Section II-E. 

D. Multiscale Variance Index (MVI) 

Statistical variance is a measure that describes how 

dispersed is a set of values around their arithmetic mean. 

While, in an EEG recording, the pre-seizure period has a 

relatively low variance, the onset of an absence seizure is 

characterized by the typical spike-and-wave pattern, which 

contains extremely high values. Thus, segments that contain 

parts of the seizure are expected to have high variance.  
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After segmenting the time series with a sliding window, 

the variance of each segment is calculated. Only those 

segments with variance higher than the mean of all the 

variances are selected. To avoid seizure-free segment 

selection that happens to have variance above the mean we 

require a certain amount of consecutive segments to have 

variance above the mean. In our study, this amount was set 

to segments corresponding to 4 sec. The first and the last 

segment of the longest run of consecutive above-threshold 

segments contain the onset and end of the seizure, 

respectively. 

Multiscale application is achieved using the same 

procedure applied to the above two segments with a smaller 

window and sliding step. Keeping only the first segment of 

the run-up for the onset and the last for the end, two more 

segments are generated. The new segments, smaller in 

length due to the smaller window, are contained at the initial 

segments and still carry the beginning and end of the seizure. 

In a recursive way, one is able to zoom-in from the initially 

peaked segments and focus on narrower and narrower 

segments providing better estimates for the onset and end of 

the seizure. The recursion procedure terminates when the 

sliding step reaches the value of 1 sample length. 

 

E. Threshold and seizure detection rule determination 

Seizures are detected if they last approximately 4-10 sec. 

Hence, the amount of consecutive measure values needed to 

be below the threshold was set to samples corresponding to 

4sec. Threshold can be extracted from normal and artifact 

free EEG periods using the Chebyshev inequality: 

 
2

1
{ ( ) }P Measure n k

k

µ !" # $   (7) 

where µ, $ are the mean value, standard deviation of the 

selected measure distribution and k the chosen statistical 

threshold. The Chebyshev inequality is applicable for any 

statistical distribution and is not limited only to normal 

distribution. 

III. RESULTS 

Our study was able to identify and visualize the seizure 

onset period using different analysis methods. For the final 

evaluation, a period starting at 17000 samples before and 

ending at 10000 samples after the seizure was selected. To 

evaluate each method' s performance, sensitivity, specificity 

and accuracy measures were calculated and are presented in 

Tables I,II. Sensitivity is the percentage of seizures correctly 

recognized by the method, specificity represents the 

percentage of normal EEG segments classified correctly as 

seizure free, and accuracy represents the percentage of both 

seizure and non-seizure segments correctly classified. 

A. Approximate Entropy (ApEn) 

ApEn was estimated from the EEG signals in sliding 

overlapping windows of length of 512 samples (2 sec) and a 

step of 256 samples (1 sec), with m=2 and r=0.1*standard 

deviation of each waveform data. The threshold was set to 

meet the criterion of having a confidence level of 90% for 

the ApEn values. A typical variation of all measures is 

presented in Figure 1. 
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Figure 1. EEG recording at the Cz channel, containing seizures and 

corresponding variation of ApEn, Order Index (OI) and Multiscale Variance 

Index (MVI). The vertical dashed lines denote the start and end of a seizure, 

while the horizontal dashed line represents the detection threshold. 

 

The seizure detection rule could detect the presence/ absence 

of a seizure. It is observed that ApEn decreases during a 

seizure. A seizure segment presents repetitive patterns 

resulting in low values, whereas the normal EEG is not 

predictable in terms of its morphology. It can be observed 

that a great value of sensitivity and accuracy is achieved. 

Also, it is notable that all normal seizure-free EEG segments 

are classified correctly. ApEn values of epileptic EEG 

appeared to be significant lower than those of normal EEG 

(Mann-Whitney Test, p<0.001). 

B. Order Index (OI) 

OI was estimated for all the aforementioned EEG epochs 

for sliding overlapping windows of length of 512 samples (2 

sec) and a step of 256 samples (1 sec). Consequently, the 

embedding dimension was chosen to be m = 4 and the order 

indices of each window were averaged over a short range of 

time lags (": 1- 5) to decrease fluctuations of the estimates. 

The statistical threshold k was chosen to be k=4.5. A seizure 

is detected if OI has a value higher than the threshold for a 
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number of consecutive windows corresponding to 4 seconds 

in length. It is obvious from the results presented in Tables I, 

II that OI can accurately detect the majority of the seizures. 

All the remaining seizures had shorter duration than the 

typical duration of 4-10s, thus failing to pass the threshold of 

the consecutive windows of 4s length. In addition, the 

algorithm achieved to correctly classify the “clean” seizure-

free data segments as ‘no seizure’, but 10 false positives 

were detected in neighboring segments close to the seizures. 

C. Multiscale Variance Index (MVI) 

Channel selection is integrated in the algorithm. For every 

EEG signal the channel with the maximum variance was 

selected for the subsequent segmentation. The initial 

window was 10sec (2560 samples) in length with a sliding 

step of 0.25sec (64 samples). The number of consecutive 

segments for classifying a run-up as a seizure was set at 

2x(Window Length/ Sliding Step) or 80 consecutive 

segments. Tables I and II summarize the performance of the 

algorithm. Given that a segment contains enough part of the 

seizure to raise its variance above mean, the ratio (Window 

Length/ Sliding Step) expresses the number of consecutive 

segments that still contains that same part. The multiplier 

(!1) controls the extra consecutive segments that one wishes 

to add at the head and tale of the run-up as the sliding 

window enters and exits the seizure part.  Because of the 

relatively large initial window, the algorithm is biased 

towards detecting seizures longer in duration leading to 

lower sensitivity rates. The use of a smaller window (e.g. 2 

sec), although it was found to increase the sensitivity 

significantly, it produced higher false positives, too. 

 
TABLE I 

DISTRIBUTION OF CONTINGENCY TABLE  

 

Seizure   

Present Absent Total 

ApEn 

Positive 73 14  87 

Negative 2 73 75 

Total 75 87 162 

OI 

Positive 

Negative 

60 

15 

10 

73 

70 

88 

Total 75 83 158 

MVI 

Positive 

Negative 

57 

18 

10 

73 

67 

91 

Total 75 83 158 

 

TABLE II 

SYSTEMS’ PERFORMANCE MEASURES 

 
Performance Measures 

Sensitivity Specificity Accuracy 

ApEn 97.33% 83.91% 90.12% 

OI 80% 87.95% 84.18% 

MVI 76% 87.95% 82.28% 

IV. DISCUSSION 

The results presented in this work indicate that the 

proposed analysis methods are able to detect absence 

seizures with increased certainty. Although, ApEn was able 

to achieve great discrimination power in terms of sensitivity 

reaching 97%, specificity was higher in MVI and OI 

(reaching 88% for both methods). Since the presented 

measures outperform each other in different performance 

measures, it is expected to achieve even better results if 

fused together by more sophisticated classifiers than just the 

threshold criterion. However, our approach in this work has 

been articulated with straightforward application of the 

involved algorithms.  

In comparing the presented approaches with other 

published works related to absence seizures the sensitivity 

results we achieved are better than the multiple signal 

classification, autoregressive and periodogram methods 

presented in [6], achieving maximum classification accuracy 

of 92% (sensitivity: 90%, specificity 93.6%) applying 

artificial neuronal network (ANN) classifiers in 5 epileptic 

patients. A wavelet-based method [7] was able to reach a 

sensitivity of 97.2% using a support vector machine (SVM) 

in 19 patients diagnosed with childhood absence epilepsy. 

Under this prism, the presented approaches seem promising 

if feature fusion, sophisticated classifiers and optimal 

parameter sets are used. Additional studies engaging more 

subjects and testing the robustness of each method against 

artifacts and other epileptic-like brain activity is expected to 

enhance detection accuracy and validate these findings 

further. 
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