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Abstract² Seizure detection from electroencephalogram 

(EEG) plays an important role for epilepsy therapy. Due to the 

diversity of seizure EEG patterns between different individuals, 

multiple features are necessary for high accuracy since a single 

feature could hardly encode all types of epileptiform discharges. 

However, a large feature set inevitably causes the increase of the 

computational cost. This paper proposes a boosted cascade 

chain to obtain both high detection performance and high 

computational efficiency. Sixteen features that are widely used 

in seizure detection are implemented. Considering the 

sequential characteristics of EEG signals, the features are 

extracted on each 1-second segment and its former three 

segments. Thus, a total of 64 features are used to construct a 

feature pool. Based on the feature pool, Real AdaBoost is used to 

select a group of effective features, on which weak classifiers are 

learned to assemble a strong classifier. The strong classifier is 

transformed to a cascade classifier by reordering the weak 

classifiers and learning a threshold for each weak classifier. The 

cascade classifier still has the similar classification strength to 

the original strong classifier. More importantly, it is able to 

reject easy non-seizure samples by the first a few weak 

classifiers in the cascade, thus high computational efficiency can 

be obtained. To evaluate our method, 90.6-hour EEG signals 

from four patients are tested. The experimental results show 

that our method can achieve an average accuracy of 95.31% and 

an average detection rate of 91.29% with the false positive rate 

of 4.68%. On average, only about 4 features are used. 

Compared with support vector machine (SVM), our method is 

much more efficient with the similar detection performance.  

I. INTRODUCTION 

Epilepsy is a common neurological disorder that affects 50 
million people worldwide. When seizure is onset, epileptiform 
discharges including slow waves and closely-spaced spikes 
can be observed in EEG signal. This makes it possible to 
detect the seizure of epilepsy by signal processing methods 
and enable a block prevention system for the therapy of 
epilepsy.  

In an epileptic prediction system, one important step is to 
distinguish the normal states from the seizure states. Various 
features have been proposed to address this problem, 
including temporal and frequency methods [1], energy [2], 
spectral analysis [3], wavelet transformation [4], sub-space 
analysis [5], Empirical Mode Decomposition [6], entropy [7], 
and the complexity [8]. Most of them can achieve good 
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performance on a specific sample set. However, since the 
great diversity of seizure patterns, almost none of them has the 
ability to detect all types of epileptiform discharges. One 
solution is to use them all in order to fuse the different 
strengths of the multiple features. This causes the increase of 
computational complexity in classification, which should also 
be seriously considered in a practical seizure detection system.  

Thus, to obtain both high detection accuracy and high 
computational efficiency, it is important to select a few 
effective features from the multiple features. AdaBoost is a 
popular algorithm capable of performing feature selection and 
has been used for epilepsy detection in recent years. Manohar 
et al. [10] and Amal [11] used AdaBoost for feature selection 
and achieved high performance in seizure prediction. 
Although the AdaBoost algorithm can select weak features to 
learn weak classifiers and combine them to a strong classifier, 
when there are hard classified samples in the training set and a 
low false alarm is required, the strong classifier may have a 
large number of features (weak classifiers). This still leads to 
expensive computation. 

Based on the observation that, although a few hard samples 
commonly need a large number of weak classifiers to 
determine the labels, most easy samples can be classified by 
only a small number of weak classifiers. This inspires a 
boosted cascade classifier for both high classification accuracy 
and efficiency. In this study, first we implement 16 different 
features and extend them to 64 features by considering the 
adjacent time windows. Then a strong classifier is learned 
using Real AdaBoost, which combines a sequence of weak 
classifiers. After that, the weak classifiers are reordered 
depending on their discriminative abilities and a reject 
threshold is learned for each weak classifier. This generates 
the final cascade classifier. The thresholds are conservative 
enough so that only easy samples are rejected in the beginning 
stages and hard samples would walk through the whole 
cascade for final decision. Since most of the EEG segments 
can be classified within the first several stages, the average 
detection time is reduced. To test the performance of our 
method, 90.6 hours of EEG signals from four patients are used. 
The results show that, the performance of our method is 
comparable to SVM, while the computational efficiency is 
improved by a ratio of 90% in seizure detection. 

II. METHODS 

Our method includes three major components, i.e., feature 
extraction and feature pool construction, strong classifier 
learning by Real AdaBoost, and cascade classifier learning. 
Figure 1 shows the framework of our method.  

A. Features and Feature Pool 

EEG signals are divided to segments by a window with the 

size of 1 second.  The window slides long the time axis with a 

stride of 0.5 second. So there is a 0.5-second overlap between 

adjacent segments. Considering the sequential characteristics 
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of EEG signals, sixteen features are extracted on each 

1-second segment and its former three segments. These 

features are used to form a feature pool for detection. The 

following sixteen features are used.  

1) Temporal and frequency analysis. The power feature 

and spectral analysis are frequently used for seizure detection. 

In this work, we extract the total signal power (P), frequency 

edges (Fe) at 80%, and the power in specific bands as three 

kinds of features. The frequency edge Fe at 80% refers to the 

frequency that 80% of the total power is contained in 

frequencies lower than it [13]. The frequency bands are 

separated to 1-4Hz, 4-8Hz, 8-12Hz, 12-30Hz, 30-58Hz and 

62-125Hz. So totally 8 features are computed.  

Besides, Empirical Mode Decomposition (EMD) has been 

proven effective for feature enhancement in [6]. Here, we 

compute the variance of the first four intrinsic mode functions 

(VoIMFs) as 4 features. 

2) Dynamic characteristics. The permutation entropy 

(PermH), sample entropy (SampEn), and Lempel-Ziv 

complexity (LZC) are used to represent dynamic 

characteristics of EEG. In our experiment, the permutation 

order n of PermH is set to 3. For SampEn, the matching length 

m is set to 2 and the tolerance 0.2*r SD , in which SD is 

the standard deviation.  

3) Morphological characteristics. Epileptiform discharges 

exhibit slow waves and closely-spaced spikes in morphology. 

Here, we compute the variance of the range between the 

upper and lower envelopes of signal (VoE) as a feature. The 

details of VoE can be found in [14].    
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Figure 1.  The framework of our method. 

B. Learning a Strong Classifier by Real AdaBoost 

Based on the feature pool, we use Real AdaBoost to select 

effective features on which weak classifiers are learned and 

combined to a strong classifier. Real AdaBoost aims at 

finding a strong classifier 1,2,...,( ) ( )i tt i
H x c x  ¦  where x  is 

a test sample and ( )tc x  is a weak classifier outputting a real 

value [15]. The key point is how to learn ( )tH x  for seizure 

detection.  

Let 
1 1{( , ),..., ( , )}a b a bx y x y� �  be a training set, where 

ix  

denotes a training sample (segment), 
iy  is the label in the set 

of {+1, -1} and +1/-1 denotes the seizure/normal label. First, 

the algorithm initializes weights 
0 ( ) 1 (2 )D i a for positive 

samples and 0 ( ) 1 (2 )D i b for negative samples. Then an 

iterative procedure is applied to choose t  best features and 

use them to learn t  weak classifiers ( )ic x . 

On each iterative round, a decision stump is used to 

construct the weak classifier for each feature. For each feature

j
F , the feature values of all samples are partitioned into two 

parts by a threshold T  and the weak classifier ( )
j

c x  has the 

form, 
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where k
W� , k

W� represent the sum of weights of positive 

samples and negative samples falling into the partitioned 

parts, respectively. The choice of the threshold T  satisfies the 

condition of minimizing 2 k k

j k
Z W W� � ¦ . Among all 

features, the classifier ( )
j

c x  that issues the minimal 
j

Z  is 

chosen as the best weak classifier ( )tc x  on the current round. 

At the end of each round, we update the weights of all 

samples by
1( ) ( )exp( ( ))t t i t iD i D i y c x�  �  and apply the 

normalization operation to make the sums of weights of 

positive and negative samples equal to 0.5, respectively. After 

t  rounds, we obtain a set of weak classifiers and the strong 

classifier ( )tH x . In practice, we set t  to 50 which is able to 

obtain satisfying performance. 

 C.  Learning a Cascade Classifier 

Although the strong classifier ( )tH x  is capable of 

distinguish normal segments from seizure segments 

effectively, it need to evaluate t  features to make a decision, 

which leads to high computational cost. If we consider 

relationship between the cumulative sum 1,2,...,( ) ( )i tt iH x c x  ¦  

and the stage t  as shown in Figure 2, we find that some easy 

samples can be classified in the early stages and only on hard 

samples, the classifier need to evaluate all weak classifiers. 

This inspires to construct an efficient cascade classifier based 

on ( )tH x . Similar idea can be found in object detection 

research [12].  
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Figure 3.  The structure of  the cascade classifier 
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The structure of the cascade classifier is shown in Figure 3. 

The key points in the cascade classifier is to put the most 

discriminative weak classifiers to the front of the cascade and 

assign a threshold 
kr to each classifier, so that most easy 

negative samples can be rejected in the early stages of the 

cascade, thus high computational efficiency can be obtained. 

The cascade classifier can be learned on a validation sample 

set, as shown in algorithm 1.   

 

Algorithm 1 

Input:  

A validation set 
1 1( , ),..., ( , )N Nx y x y , 0,1iy  for 

negative and positive samples; 

The strong classifier 1,2,...,( ) ( )i tt i
H x c x  ¦ learned via 

Real AdaBoost; 

        
1 2, ,..., tm m m , where 

km  is the maximum rate of positive 

samples that can be rejected on the i th�  stage. 

Initialize: 

Cumulative sum of  ( )tH x  for each sample, 0, 0
i

d    

        Positive samples rejection rate 0p    

For  1,2,...,k t  

z 
kp p m � , #{ | 1}k ia i y  , #{ | 0}k ib i y  ; 

z select a weak classifier with ID ( )q k  from ( )tH x  that 

maximizes the separation between the positive and 

negative samples:  

¦
¦

�
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,1-
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z update sample traces: , 1, ( ) ( )
k i k i q k i

d d c x� � ; 

z determine the threshold 
kr  as the maximum one that 

removes no more than p rate of positive samples; 

z update
truep p p � , where

truep is the true positive 

samples rejection rate under 
kr  

z remove the sample 
ix  from sample set,  the trace of 

ix  

meet ,k i k
d rd  

Output:  

All output function ( )q k
c  and threshold 

kr  

 

The rejection vector 
1 2{ , ,..., }tm m m m is set evenly 

according to the target detection rate (95% in our 

experiments). The determination of the thresholds in the 

training procedure is conservative that guarantees the 

detection rate does not change, compared with the original 

strong classifier � �xH t
. The false alarm can be reduced in 

proceeding of the cascade.  

In the test process, if the cumulative sum of a sample on 

stage k is less than threshold 
kr , this sample will be rejected 

and determined as a normal EEG signal. Otherwise, the 

sample flows into next stage for evaluation until it passes the 

final stage where it is classified as the seizure segment. 

III. EXPERIMENT AND RESULT  

A.  Materials    

To evaluate our method, we collect 90.6-hour EEG Data 

from four patients in the Second Affiliated Hospital, Zhejiang 

University School of Medicine. A total of 32-channels scalp 

EEG signals were recorded by NicoletOne amplifier at a 

sample rate of 256Hz. 50Hz notch filter has been applied in 

the acquisition. In our experiment, only one channel data is 

used for epilepsy detection according to doctors¶ suggestions.  

For each patient, the data is divided to 3 parts. The first two 

parts contain about 150 seizure segments and 10,000 normal 

segments, which are used for learning the strong classifier and 

cascade classifier. The rest part is used for testing. 

B. Evaluating the number of weak classifiers 

This experiment evaluates the effect of the number of weak 

classifiers in the strong classifier learned by Real AdaBoost. 

The Receiver Operating Characteristics (ROC) curve reflects 

the relation between detection rate and false positive rate, and 

a larger area below ROC curve indicates a better detection 

performance. We plot the (ROC) curves of strong classifiers 

with different weak classifiers. As shown in Figure 4, the 

performance is improved along with the increase of weak 

classifiers. The improvement from 6 weak classifiers to 30 

weak classifiers is significant, while from 30 to 50 weak 

classifiers, the increase of the performance becomes slow. So 

50 weak classifiers should be enough for accurate epilepsy 

detection. 

 

Figure 4.  ROC curves of classifiers with different weak classifiers 

(features). 

C. Evaluating the Performance of Cascade Classifier 

This experiment evaluates the detection performance of the 

cascade classifiers. The accuracy (AC), detection rate (DR), 

and false positive rate (FR) are used for assessment. To verify 

the classification ability of our cascade classifiers, we 

compare the performance between our method and SVM. For 

SVM, the MATLAB version of LIBLIEAR library [17] is 

used and all 64 features are employed to train the classifier. 

The L2 loss function is used and the parameters are tuned for 

optimal performance with cross-validation method. 

As shown in TABLE I, the boosted cascade classifier 

performs well over 4 patients with an average accuracy of 

95.31% and an average detection rate of 91.29% with the 

average false positive rate of 4.68%. Compared with the SVM 
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using all 64 features, the performance of our method is 

comparable to it.  

 
TABLE I.  The comparison between our method and SVM  

 Boosted Cascade (Ours) SVM 
AC  

(%) 

DR 

(%) 

FR 

(%) 

AC 

(%) 

DR 

(%) 

FR 

(%) 

P1 98.59 91.33 1.39 98.35 85.33 1.63 

P2 92.68 92.33 7.31 98.43 86.08 3.32 

P3 97.61 96.05 2.39 98.61 84.21 1.38 

P4 92.35 85.43 7.63 95.52 81.46 4.47 
Average 95.31 91.29 4.68 97.72 84.24 2.7 

 

TABLE II.   THE AVERAGE NUMBER OF FEATURES ON THE SIGNALS OF 

FOUR PATIENTS 

  P1 P2 P3 P4 Average 

#Stages 1.924 7.474 3.079 6.772 4.812 

D. Evaluating the Efficiency of Cascade Classifier 

In the previous experiment, our cascade classifier has 

achieved high detection performance. This experiment 

assesses the computational cost of our method. Due to the 

cascade and rejection thresholds in every stage, most 

non-seizure segments can be rejected on early stages and do 

not need to pass through all weak classifiers, thus the time 

cost is reduced. We evaluate the average number of stages 

and the average time cost for detecting one segment by our 

cascade classifier.  

1. Average number of stages 

TABLE II shows the results for the four patients. The 

average stage number to be used is only about 5, which means 

lots of feature computation time can be reduced. Note that the 

SVM classifier needs to evaluate 64 features. In addition, the 

number of stages used varies over patients because of the 

diversity of epileptic discharges. For example, for patient 1, 

only about 2 stages are required on average for classification. 

While for patient 2, about 7 stages are used on average. 

2. Average Time Cost 

The experiments are carried out on a common PC with a 

2.33GHz Intel Core Duo i3 CPU and 2G RAM. Figure 5 

shows the average time cost for detecting one segment. Our 

boosted cascade classifier only needs 33.6 milliseconds on 

average to detect a segment, which is less than 10% of the 

SVM classifier.  

 
Figure 5.  The comparison of time cost of one-segment detection between 

our method and SVM. 

IV. CONCLUSION 

In this paper, we proposed a boosted cascade method to 

detect epileptic seizure. This method is effective with high 

detection performance comparable to SVM with 64 features, 

while the average time cost is only about 10% of linear SVM 

classifier. This method is suitable for both offline seizure 

segment labeling and online real-time seizure detection tasks.   
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