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Abstract²This paper presents the results of our study on 

finding a lower complexity and yet a robust seizure prediction 

method using intracranial electroencephalogram (iEEG) 

recordings. We compare two classifiers: a low-complexity 

Adaboost and the more complex support vector machine 

(SVM). Adaboost is a linear classier using decision stumps, and 

SVM uses a nonlinear Gaussian kernel. Bipolar and/or time-

differential spectral power features of different sub-bands are 

extracted from the iEEG signal. Adaboost is used to 

simultaneously classify as well as rank the features.  

Eliminating the low discriminating features reduces 

computational complexity and power consumption. The top 

features selected by Adaboost were also used as a feature set for 

SVM classification.  The outputs of classifiers are regularized 

by applying a moving-average window and a threshold is used 

to generate alarms. The proposed methods were applied on 8 

invasive recordings selected from the EPILEPSIAE database, 

the European database of EEG seizure recordings. Double-

cross validation is used by separating data sets for training and 

optimization from testing.   The key conclusion is that 

Adaboost performs slightly better than SVM using a reduced 

feature set on average with significantly less complexity 

resulting in a sensitivity of 77.1% (27 of 35 seizures in 873h 

recordings) and a false alarm rate of 0.18 per hour. 

 
Index Terms ± Epilepsy, Seizure Prediction, Classification, 
Adaboost, Support Vector Machine, Power Spectral Density. 

I. INTRODUCTION 

Epilepsy is the second most prevalent brain disorder. 
About 60 million people worldwide suffer from epileptic 
seizures. In the United States, the cost to cover 
direct/indirect expenses related to epilepsy is estimated to be 
approximately $15.5 billion per year [1]. A major 
disadvantage of the disease to patients is the random nature 
in which seizures appear anytime, anywhere, and often 
without predictive symptoms, resulting in social difficulties 
or even injuries. Antiepileptic drugs as well as brain surgery 
are common therapies for epilepsy treatment; however, they 
often have critical side effects, are only effective in a 
fraction of the population, and many patients are not eligible 
for surgery [2]. An accurate seizure prediction algorithm 
implemented on an implantable device would allow for 
novel reactive therapies acting on time scales of seconds to 
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minutes prior to the seizure onset. Any success in real-time 
seizure prediction could improve the living conditions of 
epileptic patients. 

There is a need for seizure prediction algorithm with 
high sensitivity and specificity that can be implemented on 
an implantable device for closed-loop therapies. Such a 
device should be of low-power-budget and small enough to 
be implantable inside the skull cavity or worn as a portable 
pack. Unfortunately seizure prediction algorithms have not 
matured enough to be implemented in a standalone portable 
pack [3]. The needs for a device remain as follows: 1) A 
seizure prediction algorithm that has high enough sensitivity 
and specificity for medical purposes, and 2) This algorithm 
must be implemented on a device within a power budget of 
about 50�: as required by experts in the medical industry 
[2]. Power consumption is determined by the features to be 
extracted, the type of features, the number of channels 
monitored, sampling rate, and the classifier. In general, 
nonlinear features as well as nonlinear classifiers consume 
more power than linear ones. We suggest that an efficient 
classifier, such as Adaboost, using a subset of spectral power 
features, may achieve these goals. 

A vast range of features has been tested with machine 
learning algorithms to predict seizures during the last decade 
[4-6], but often these findings cannot be reproduced in long-
term EEG recordings [3, 7]. It has been shown that transient 
changes of power spectral density (PSD) of EEG signal 
preceding the seizure has significant predictive power [8-
10]. In [11] it was argued that the spectral power in certain 
sub-bands of the iEEG, specifically in higher frequency sub-
bands, could play a key role in seizure prediction. In [8] a 
patient-specific seizure prediction algorithm was proposed 
using a SVM classifier and bipolar iEEG recordings with 9 
spectral bands from six EEG electrodes achieving a 
sensitivity of 97.5% (78 of 80 seizures, in 433.2 hours), and 
a false positive rate per hour (FPR) of 0.27. 

This paper makes two contributions. First, it compares 
the capabilities of SVM and Adaboost classifiers for patient-
specific seizure prediction task using spectral power features 
extracted from space differential recordings. SVM is a 
powerful classifier, but Adaboost is computationally much 
more efficient. Since the Adaboost algorithm has less 
computational cost, therefore, it is more suitable for low-
power implantable devices. Second, it evaluates the 
efficiency of previously proposed bipolar spectral power 
features on new long-term continuous iEEG recordings.  
Results of prior studies  were based on the Freiburg dataset 
[8, 11], which has fewer channels, where signals are 
sampled at a lower rate, and which are much shorter than 
those in the EPILEPSIAE database used in this paper. 
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II. METHODOLOGY 

A. Subjects 

Long-term continuous multichannel iEEG recordings of 
8 patients with refractory partial epilepsy were chosen from  
EPILEPSIAE, the European database on epilepsy [12]. From 
among 70 candidate patients available in the database, only 
those with at least 6 seizures were considered with sampling 
rate of 400Hz.  The iEEG signals were recorded at the 
epilepsy unit of the Pitié-Salpêtrière Hospital of Paris, 
France. Patient characteristics are summarized in Table I. 
For each patient, 9 channels were selected; six channels 
were selected from focal channels, and three from a non-
focal area. The seizure focus was identified by a neurologist 
and annotated in the database. 

Table I. Information for the 8 studied patients 

ID Sex 
Pat. 
age 

Onset 
age 

Rec.  
time (h) 

# seiz. Seizure type Localize 

1 f 33 21 458.6 7 CP(4), UC(3) Right T 

2 m 27 16 234.9 6 SP(2), SG(2), CP(1) ,UC(3) Left T 

3 m 34 15 335 7 CP(3), SP(3) ,UC(1) Right T 

4 f 31 10 159.2 7 CP(2), SG(2), SP(1) ,UC(2) Left T 

5 m 38 27 342.1 9 CP(9) Right T 

6 m 40 12 221.2 8 CP(4), SG(1), UC(3) Left T 

7 m 36 1 211.7 12 UC(12) Right F 

8 m 36 6 253.9 6 SG(6) Right P 

A/T  34.4 13.5 2216 62   

� Seizure type: Type of the clinical seizures; SP: Simple Partial, CP: Complex Partial, 
SG: Secondarily Generalized, UC: Unclassified. 

� Localize: Localization of seizures; T: Temporal lobe, F: Frontal lobe, P: Parietal 
lobe (between frontal and occipital). 

B. Feature extraction 

The spectral power features in different frequency bands 
are extracted from bipolar and/or time-differential windowed 
iEEG signals [8]. Spectral bands are determined by the 
standard Berger EEG bands: delta µ/¶�����-�+]���WKHWD�µ�¶���-
�+]���DOSKD�µ.¶���-��+]���EHWD�µ�¶����-30Hz), except for the 
gamma µ�¶� EDQG�ZKLFK�was divided into four smaller sub-
bands of 30-48Hz, 52-75Hz, 75-98Hz, 102-200Hz. The total 
power also is considered as a feature. Power line noise is 
eliminated by excluding 48-52Hz, 98-102Hz, 148-152Hz, 
and 198-200Hz frequency bands from power spectral density 
(PSD). The normalized spectral power (NSP) feature is used 
here, which for a given sub-band is computed by dividing 
the spectral power of that sub-band to the total power using: 

052Ü L
Ã 25&:T;Ü

Ã 25&:T;çâç

 (1) 

where x is a portion of the raw EEG, and i and tot index 
values represent the i-th frequency sub-band and total 
frequency band, respectively. PSD(x) is the power spectral 
density which is estimated using the Welch's method [13]. 
The advantage of using the NSP values instead of absolute 
values is that they decrease the effect of changes in total 
power on the values of spectral power of sub-bands [5]. 
Length of the each window is chosen as 20 seconds, with an 
overlap of 50%, providing a seizure prediction every 10 
seconds. By employing space-differential method, common-
mode interferences such as movement artifacts and power 
line noises can be efficiently rejected [8]. Features were 
extracted from 9 iEEG channels selected from each of the 8 
invasively recorded patients. For bipolar features, all 
possible pairwise combinations of 9 channels were 

considered. Thus we have 9*36=324 features for each of 
bivariate measures (Bipolar and/or Time-differential). 

C. Feature preprocessing 

Features were preprocessed prior to classification in 
order to reduce the effect of noise and to remove outlying 
samples. Outliers were detected using *UXEE¶V methods [14], 
and replaced by values obtained by  interpolating the values 
of their neighbors. Each resulting feature was then scaled to 
a range of [0 1] by dividing by the maximum value of that 
feature. All features were subsequently divided into training 
and test sets: features related to the part of signal containing 
first three seizures were used as training samples. The 
remaining signals and their related features were used for 
test. As supervised classifiers were investigated here, each 
sample had to be labeled. Seizure prediction was considered 
as a two-class problem: distinguishing between preictal and 
non-preictal states. Preictal samples were defined 
operationally as any recording within 30 minutes preceding 
a recorded seizure. All remaining data excluding data 
occurring 30 minutes following seizure onset were labeled 
as non-preictal. In such classification problems facing 
unbalanced classes, the classifier tends to produce higher 
accuracy for the dominant class [15]. To prevent this issue, 
the number of non-preictal samples of the training set was 
reduced by sub-sampling to achieve a balanced number of 
samples between the two classes. After training (optimizing 
the classifier parameters) using balanced number of training 
samples, the trained classifiers were tested using original 
non-reduced test samples. 

D. Feature selection  

Determining discriminative features from the 324 
potential features extracted reduces computational 
complexity and can increase sensitivity and specificity. 
Classifiers such as Adaboost try to reduce the effective 
weight of features that are less discriminative during the 
training phase. However, this increases the computational 
cost exponentially with the number of features. On the other 
hand, the SVM classifier assigns same weights to all the 
features; therefore, inclusion of non-discriminating features 
degrades the classification. Non-discriminative features can 
also increase extensively the number of support vectors, thus 
reducing robustness of the SVM classifier. This, in turn, can 
increase the necessary time for training and testing the SVM 
classifier. In this study, feature ranking using Adaboost, first 
used in [16] for seizure prediction, was used.  

E. Classification 

The preictal and non-preictal classes generally cannot be 
separated by a single linear discriminator in the feature 
space. Therefore, linear classifiers usually perform poorly. 
Employing a non-linear classifier generally greatly improves 
prediction, but at a computational cost. To classify datasets 
with nonlinear boundaries, SVM uses kernel functions 
representing the data in a higher feature space where linear 
boundaries may separate data. The popular Gaussian Radial 
Basis Function (RBF) kernel (2) is used,  

-:Tá U; L ATL�:
F�T F U�6

tê6
; (2)  

where P is the scale parameter (openness of the Gaussian), 
and x, and y are feature vectors in the input space. The 
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Gaussian kernel has two hyper parameters to control 
classification performance: the cost C and the scale 
parameter P. SVM with Gaussian kernel acts as a non-linear 
classifier. However its computational cost is very expensive. 
Furthermore, for best operation, some parameters should be 
optimized. Therefore, two SVM parameters of soft margin 
(C) and scale parameter (ê) are optimized here using a grid 
search. SVM algorithm used here is the one implemented in 
the LibSVM [17] toolbox. 

Adaptive boosting approaches, such as Adaboost, use 
many weak classifiers together to obtain good classification 
results. Adaboost uses linear decision stumps (base 
classifiers), which are less computationally demanding, very 
fast and quite suitable for large classification problems such 
as in seizure prediction. The Adaboost classifier used is the 
one implemented in the µStatistical Pattern Recognition 
Toolbox¶ (STPRtool) [18].  

To reduce the number of false alarms, the classification 
outputs of both classifiers were subjected to regularization 
by the firing power method [19] that accounts for the 
classification dynamics in the preictal class. The length of 
moving average window of the firing power method was 
selected as 10 minutes, which covers 60 consecutive feature 
samples.   

III. EXPERIMENTAL RESULTS 

First, Adaboost was trained on the full data set, and the 
features were then ranked by feature weight and average 
rank through bootstrapping. Afterward Adaboost was trained 
on the training samples using different sized feature sets, 
ranging from one feature (the highest ranked) to the top 30 
most predictive features. The features and number of 
features that produced the highest sensitivity and lowest 
false positive rates were selected.  The same features were 
then used for SVM to allow for direct comparison of results. 

A. Performance Analysis 

Sensitivity (SS) and false prediction rate (FPR) of the 
raised alarms were used to compare the two classifiers. The 
SS is the fraction of correctly predicted seizures within the 
total seizures, and the FPR is the number of false predictions 
per hour. Table III summarizes the SS, FPR and F2-score 
[20] for 8 patients from the EPILEPSIAE database.  

On average, SVM provided seizure predictions with a 
sensitivity of 75.7% and FPR of 0.17h-1, whereas Adaboost 
generated sensitivity of 75.7% and FPR of 0.21h-1. The 
results obtained from SVM and Adaboost are quite similar. 
SVM exhibited slightly better performance in terms of FPR. 
Also bipolar spectral power features provided lower FPR in 
comparison to bipolar time-differential ones. Although the 
average results of all patients are not surprising, however, 
for 5 patients we achieved prediction with SS of 100% and 
FPR of 0.16h-1 on average.  

B. Complexity Analysis 

An advantage with the Adaboost method over the SVM 
is that it has much lower complexity, which makes it more 
suitable for designing implantable devices with low power 
budgets. The hardware complexity and thus the power 
consumption of an SVM implementation with Gaussian 

kernel is directly proportional to � Û �qt, where � and �qt 
are the dimension of feature space and the number of 
support vectors generated during training process, 
respectively [16]. The number of support vectors depends on 
separability of the features; the more nonlinear the 
separation boundary between the classes in feature space the 
greater number of support vectors is needed. The number of 
required features depends on how well the data is separated 
by the top-ranked features. In some patients classification 
can be achieved with a few features, while in others many 
more are needed. Thus the overall complexity of an SVM 
based seizure prediction algorithm depends on the 
discriminative quality of the features. On the other hand, the 
hardware complexity of Adaboost depends on the required 
numbers of comparison operations, which in turn is equal to 
the number of selected decision stumps. 60 decision stumps 
were considered in this work. The average optimal feature 
set was 14.6. The four first high ranked features for each 
patient are listed in Table IV.  

Table III.a. Results of bipolar spectral power features 

ID 
 #Select 
feature 

 Adaboost  SVM 

  SS FPR F2-score P-time  SS FPR F2-score P-time 

1  11  100 0.16 0.26 937  75 0.04 0.21 1367 

2  29  100 0.19 0.13 1605  100 0.23 0.1 575 

3  6  100 0.18 0.1 843  100 0.16 0.08 1263 

4  30  100 0.14 0.5 1581  100 0 0.43 1178 

5  15  50 0.19 0.11 1103  50 0.04 0.17 573 

6  19  100 0.07 0.31 1076  60 0.17 0.09 976 

7  12  55.5 0.17 0.14 1556  66.6 0.27 0.15 1075 

8  2  66.6 0.41 0.2 700  100 0.31 0.23 1386 

A/T  15.5  77.1 0.18 0.22 1209  74.3 0.16 0.18 1031 

 

Table III.b. Results of bipolar time-differential spectral power features 

ID 
 #Select 
feature 

 Adaboost  SVM 

  SS FPR F2-score P-time  SS FPR F2-score P-time 

1  6  75 0.24 0.16 1357  100 0.14 0.16 1110 

2  13  100 0.09 0.14 480  100 0.16 0.11 1065 

3  30  100 0.32 0.06 1583  66.6 0.12 0.06 1225 

4  15  100 0.13 0.61 1068  100 0 0.3 1305 

5  13  66.6 0.2 0.16 405  66.6 0.3 0.1 1210 

6  20  80 0.29 0.18 1555  80 0.14 0.11 1475 

7  9  55.5 0.32 0.14 702  55.5 0.21 0.18 558 

8  4  66.6 0.24 0.23 1660  100 0.36 0.21 1337 

A/T  13.75  74.3 0.25 0.21 1024  77.1 0.19 0.15 1080 

x P-time: Average time distance between true alarms and their corresponding 
seizure onsets in second 

Table IV. Four first high ranked features 

ID 
 Bipolar 

Feat1 
 Bipolar time-differential 

Feat1 
 Feat1 Feat2 Feat3 Feat4  Feat1 Feat2 Feat3 Feat4 

1  nf2-nf3-4 nf1-nf3-5 f2-f3-8 f2-nf2-7  f3-nf2-4 nf1-nf3-9 nf2-nf3-5 f2-nf1-7 

2  f1-f3-8 f3-f4-4 f1-f3-9 f4-nf1-4  f5-nf1-7 f3-f4-6 nf2-nf1-4 f5-f2-9 

3  f1-f2-9 f2-nf2-6 f5-f6-6 f2-f4-4  f1-f6-9 nf2-f5-3 f5-f6-9 f2-nf2-9 

4  f2-nf2-8 f5-nf3-1 nf3-nf4-3 f4-f5-6  f2-nf2-3 f4-nf2-2 f3-nf2-6 f3-f5-3 

5  nf2-nf3-4 f1-nf3-4 f2-nf1-2 f3-nf3-3  nf2-nf1-4 nf2-nf3-3 f3-nf3-2 f2-f3-8 

6  nf2-f2-9 nf2-f3-8 f1-f5-9 nf1-nf2-4  nf2-f1-5 nf1-f4-4 nf3-f6-5 nf3-f5-6 

7  f1-nf3-6 f3-f5-7 f1-f4-1 f1-f5-4  nf2-f1-7 f3-f2-9 f1-f5-5 nf2-f3-6 

8  f3-f5-2 f1-f2-9 f3-f5-3 f6-f2-3  nf1-nf2-9 f3-f6-3 f4-f1-4 f6-f2-8 

x ch1-ch2-freqBand, f: focal, nf: non-focal 

x Frequency bands 1: delta µ/¶� ����-�+]��� ��� WKHWD� µ�¶� ��-�+]��� ��� DOSKD� µ.¶� ��-
��+]������EHWD�µ�¶� ���-30Hz), 5, 6, 7, 8: gamma µ�¶�EDQG�RI���-48Hz, 52-75Hz, 
75-98Hz, 102-200Hz. 9: The total power 
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C. SVM parameters  

We examined the relation between optimum C and ê 
values of the SVM classifier, by studying F2-score of the 
classifier output. The best alarm sensitivity and FPR are 
obtained from the SVM outputs having the highest F2-score. 
This measure was calculated for different C and Sigma (ê) 
values using a grid search, and an inverse relation between 
optimum C and ê values was found. Parameter C controls 
the tradeoff between maximization of the margin width and 
the minimization of the number of misclassified samples in 
the training set [21]. Also, the scale parameter (ê) controls 
the width of the Gaussian surface of the RBF kernel. Fig. 3 
shows the F2-score achieved for different combinations of C 
and ê, for one of the patients.  

 

Figure 3. F2-score of SVM classifier across different C and P values for one 

of the studied patient. 

Based on this finding it is suggested to limit the 
extensive grid search area to a diagonal region in the C-ê 
diagram only. This can significantly increase training speed. 
Furthermore it may be possible to govern the optimum C-ê 
relation by an equation or an inequality. 

IV. CONCLUSION 

A comparison between Adaboost and SVM classifiers 
for patient-specific seizure prediction was presented. 
Discriminative features were selected from amongst the 
bipolar and/or time-differential features by a boosting 
feature selection method. The lower-complexity Adaboost 
algorithm produced comparable results to those of SVM. As 
a result of this study, we find that linear-spectral power 
features are good features for classification, corroborating 
previous findings [8, 16]. 
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