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Abstract— We propose a novel entropy-based measure to
quantify the circadian variations of scalp electroencephalogram
(EEG) by analyzing waking epochs of nap opportunities under
an ultradian sleep-wake cycle (USW) protocol. To compute
this circadian measure for a nap opportunity, each waking
epoch (∼1 sec) is decomposed using wavelet packet transform
and the relative energy for the desired frequency band (here,
10–12 Hz) is calculated. Then, in a bootstrapping procedure,
a shape statistic (skewness or kurtosis) of the relative en-
ergy distribution, after each resampling, is computed. Finally,
the probability density function of this statistic is estimated,
and the corresponding differential entropy is considered as
the circadian measure. This measure was evaluated using
EEG recordings from 4 healthy subjects during a 72-h USW
procedure. According to the results, the proposed measure
showed a significant circadian variation both for individual
and group data, with peak values occurring near the core
body temperature minimum. The performance of the entropy-
based measure was also compared with that of two other
measures, namely mean energy logarithm and mean energy
ratio, revealing the superiority of this measure.

I. INTRODUCTION

Circadian rhythms are endogenous 24-h oscillations ob-

served in various physiological, hormonal and behavioral

processes in humans, and are driven by an endogenous

central circadian pacemaker that is located in the suprachi-

asmatic nucleus of the hypothalamus. Under controlled con-

ditions, several processes including core body temperature,

melatonin secretion, and cortisol levels can be used to

reliably assess circadian phase [1].

Circadian variations of the electroencephalogram (EEG)

signal, the most utilized tool in brain function analysis,

have been studied for both sleep and waking states in

humans [2]–[6]. Using a forced desynchrony protocol in

7 healthy subjects, Dijk et al. reported the EEG signal

recorded during rapid and non-rapid eye movement sleep

varied across circadian phases [2]. Using a 37-h to 42-h

constant routine procedure in 19 healthy subjects, Aeschbach

et al. [3] observed a circadian variation in the EEG power

spectral density for the frequency ranges of 4.25–8 Hz and

10.25–13 Hz. The circadian variation in different frequency

bands of the EEG was also assessed during wakefulness

by Cajochen et al. in 7 men during a forced desynchrony

procedure [5]. Prior studies used Fourier analysis of the EEG.
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This paper presents a novel entropy-based measure to

quantify scalp EEG variations at different circadian phases.

Data were collected under an ultradian sleep-wake cycle

(USW) protocol, separating the effects of sleep-wake de-

pendent and circadian changes. The relative energy of EEG

waking epochs (for 10–12 Hz) for each nap opportunity is

calculated by wavelet analysis, and the differential entropy

of a shape statistic distribution, resulting from a bootstrap-

ping procedure, is computed. The ultimate objective of

this research is to develop a reliable non-invasive circadian

marker based on EEG analysis. Section II describes the data

and protocol used in this study and provides computation

details of the proposed assessment of circadian phase. In

Section III, the results of assessment of this novel measure

are presented and compared with those of two other wavelet-

based measures. Results are presented for individual and

group data (as opposed to previous studies, only reporting

circadian rhythms for the study group).

II. MATERIALS AND METHODS

A. Data and Protocol

Four healthy subjects were recruited to participate in this

study following ethics approval and informed consent (two

women and two men; mean age ± SD: 28.1 ± 5.2 years).

Exclusion criteria included any medical conditions, night

shift work, excessive tobacco or alcohol use, and illicit drug

use. Women were not on oral contraceptives, had regular

menstrual cycles and were studied during the follicular phase

of their menstrual cycle. All subjects maintained a regular

sleep-wake cycle for at least 3 weeks prior to admission,

according to their habitual sleep-wake schedule. Their com-

pliance was verified by daily phone calls to the laboratory, a

sleep-wake log, and actigraphic monitoring during the week

before admission.

An USW procedure, illustrated in Fig. 1, was adopted in

this study. The USW procedure provides the opportunity to

quantify the circadian variation of physiological parameters

while minimizing the confounding effect of sleep depriva-

tion. It allows the occurrence of sleep and waking at a

variety of circadian phases [7]–[9]. For this study, each

subject stayed in a time isolation suite for 5 consecutive days.

The experiment started with an 8-h baseline sleep episode

on the evening of Day 1 at the subject’s habitual bedtime,

determined based on his/her prior 3-week sleep-wake log.

Then, the subject underwent a 72-h USW procedure upon

awakening, consisting of 60-min wake episodes in very dim

light (<10 lux) alternating with 60-min nap opportunities in

total darkness (<0.3 lux). Throughout the USW procedure,
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Fig. 1. The ultradian sleep-wake cycle (USW) procedure. Following an 8-h
baseline sleep episode (Days 1–2), subjects started a 72-h USW procedure
(Days 2–5). White bars refer to waking episodes in ∼150 lux, while grey
bars represent waking episodes in very dim light (<10 lux) and black bars
show nap opportunities in total darkness (<0.3 lux).

the subject remained in a semi-recumbent position in bed

with low activity levels, while meals were replaced by

balanced iso-caloric snacks administered during each wake

episode. The USW procedure was followed by an ad-libitum

nap episode on Day 5 to conclude the experiment.

Throughout the experiment, core body temperature (CBT)

and polysomnographic (PSG) recordings were done, includ-

ing the scalp EEG, electromyogram (EMG), and electroocu-

logram (EOG). The CBT was recorded every 15 sec using a

thermistor (Steri-Probe, Cincinnati Sub-Zero Products Inc.,

Cincinnati, OH, USA), inserted 10 cm into the rectum and

connected to an in-house data acquisition system. An ad-

hoc program was used to compensate for probe slips and

malfunctions by excluding data points lying outside the

range of 36◦C to 38◦C or data showing a rate of change

greater than 0.2◦C/min. Before discarding any data, they

were visually inspected; then, the CBT values were averaged

into 1-min bins for further analysis. The CBT minimum

for each subject was determined using a dual-harmonic

regression model.

The EEG was continuously recorded according to the

international 10–20 system [10] and sampled at 250 Hz

using the Harmonie system (Natus Medical Inc., Montreal,

Canada). PSG recordings were visually scored using 30-

sec sleep epochs, according to the standard criteria [11].

Epochs belonging to the waking state of the nap opportunities

(narrow black bars in Fig. 1) were used to quantify the

variation of EEG at different circadian phases. The circadian

variation of EEG was assessed by analyzing activities in

the frequency range of 10–12 Hz (i.e., upper α-band), in

agreement with previous studies reporting circadian rhythms

of EEG during wakefulness, e.g. [3]. For this purpose, we

chose the occipito-parietal montages of O1–Pz and O2–Pz at

which the α-band activity is more prominent during relaxed

state with eyes closed. EEG recordings were segmented into

non-overlapping epochs of 1.024 sec. That is, the length

of each epoch was 256 samples (based on the sampling

frequency of 250 Hz), suitable for analysis by wavelet

transform which requires the given signal has a length that

is a power of two to be properly analyzed [12].

B. Wavelet Analysis

In this work, the circadian variation of the EEG signal

is analyzed based on the epoch relative energy calculated

using the wavelet packet transform (WPT), as a suitable

analytical tool for analysis of transient and non-stationary

time series [12]. Using bounded basis functions, the wavelet

transform is able to locate the patterns of interest, including

those with short duration that are not usually captured by the

Fourier transform. As a generalization of the discrete wavelet

transform, the WPT provides a greater range of possibilities

for signal analysis by offering the dyadic decomposition

procedure in both lower and higher frequencies [12]. Each

EEG epoch from the waking state of a given nap opportunity

is decomposed using WPT, and the coefficients at the last

decomposition level (maximum frequency resolution) are

used to compute the energy. Here, Daubechies-6 wavelet

(i.e., filter length of 12) is employed based on the reported

performance of Daubechies wavelets in EEG analysis [13],

[14]. Let {ci} be the wavelet coefficients corresponding to a

desired frequency band F at the last decomposition level, and

i = 1, . . . , N (where N is the total number of coefficients

corresponding to F ). Then, the energy of the signal for F is

calculated as E =
∑N
i=1
c2i .

Considering the energies of 10–12 Hz and 0.5–12 Hz for

the kth EEG epoch as Edk and ETk respectively, we define the

relative energy measure (used to quantify EEG variations) as

Ek =
Edk
ETk
. (1)

C. Entropy–Based Circadian Measure

Once the relative energy measure is calculated for all

waking epochs of a nap opportunity, the resulting set of {Ek}
(k = 1, . . . ,K , where K is the total number of waking

epochs) is used to quantify the waking EEG variations in

the desired frequency band (here, upper α-band) for this nap

opportunity. Considering {Ek} as a set of values observed

for the given EEG period, we may quantify this EEG

segment based on the changes seen in the distribution of

the observation set when it is resampled with replacement

(i.e., bootstrapping procedure [15]). For this purpose, the

skewness (as a measure of “asymmetry”) or kurtosis (as

a measure of “peakedness”) [16] of the observation set

distribution is calculated after each resampling. Let δm be

a statistic (skewness or kurtosis) calculated based on the

mth resampling of {Ek} (here, m = 1, . . . , 1000) , then the

circadian measure (C) describing the variations of EEG for

the waking state of the given nap opportunity is defined as

the differential entropy [17] of the continuous variable δ

C = −

∫ ∞

−∞

p̂(δ) ln p̂(δ) dδ , (2)

where p̂(δ) is the probability density function (PDF) of

the variable δ, estimated using the kernel density es-

timation [18], as a nonparametric approach. Given M
data points {δ1, . . . , δM} of an unknown distribution,

p(δ), the PDF estimator with kernel K(·) is defined as

p̂(δ) = 1

Mw

∑M
m=1

K

(

δ−δ
m

w

)

, where w is the window

width (also called smoothing parameter). In this work, a

standard Gaussian kernel is used and the window width is

estimated by w = σ̂
(

4

3M

)1/5
, where σ̂ is the estimated

standard deviation of data [18].
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TABLE I

DIFFERENT MEASURES FOR IDENTIFYING THE CIRCADIAN VARIATION OF SCALP EEG USING INDIVIDUAL AND GROUP DATA, UNDER THE USW PROTOCOL.

Measure
Channel O1–Pz Channel O2–Pz

Subj. 1 Subj. 2 Subj. 3 Subj. 4 All Subj. 1 Subj. 2 Subj. 3 Subj. 4 All

MEL 0.52 (1e-4) 0.02 (0.73) 0.35 (1e-3) 0.55 (2e-5) 0.19 (<1e-12) 0.55 (5e-5) 0.12 (0.13) 0.39 (3e-4) 0.49 (2e-5) 0.23 (<1e-12)

MER 0.49 (2e-4) 0.53 (5e-6) 0.48 (3e-5) 0.24 (1e-2) 0.41 (<1e-12) 0.41 (1e-3) 0.39 (3e-4) 0.35 (1e-3) 0.28 (6e-3) 0.31 (<1e-12)

C (Skew.) 0.68 (5e-7) 0.73 (6e-10) 0.46 (6e-5) 0.37 (6e-4) 0.53 (<1e-12) 0.66 (2e-6) 0.58 (1e-6) 0.38 (4e-4) 0.37 (5e-4) 0.47 (<1e-12)

C (Kurt.) 0.63 (4e-6) 0.67 (2e-8) 0.52 (8e-6) 0.31 (2e-3) 0.51 (<1e-12) 0.60 (1e-5) 0.41 (2e-4) 0.40 (2e-4) 0.35 (9e-4) 0.42 (<1e-12)

MEL: mean energy logarithm; MER: mean energy ratio; Skew.: skewness; Kurt.: kurtosis

R2 (p–value) are reported for each case (see Section III-A for details). p–values are given in parentheses.

The circadian measure C shows high values when the dis-

tribution of the relative energy measure changes noticeably

by resampling, resulting in values of the statistic δ that are

more scattered (high entropy). In contrast, when the EEG

manifests more homogeneous patterns in the frequency band

of interest, the distribution of {Ek} preserves its approximate

shape through the resampling procedure, and consequently

the resulting statistic δ is more condensed (low entropy).

D. Other Measures

To better evaluate the performance of the proposed

entropy-based circadian measure, we defined two other mea-

sures of EEG variations, namely mean energy logarithm

(MEL) and mean energy ratio (MER), and computed them

for EEG recordings from the four subjects. Results have

been compared with those of the entropy-based measure (see

Section III). The MEL is simply defined for the waking state

of a nap opportunity as 1

K

∑K
k=1

lnEdk , where Edk is the

energy of 10–12 Hz for the kthe epoch (calculated using the

WPT) and K is the total number of EEG waking epochs.

The MER, on the other hand, is defined as 1

K

∑K
k=1
Ek for

the waking state, where Ek is calculated by (1).

III. RESULTS

The performance of the proposed entropy-based measure

C in describing the EEG circadian variation was assessed by

applying it to the waking state of the nap opportunities of

the four healthy subjects (introduced in Section II-A), using

both skewness and kurtosis statistics. The performance of

this measure was also compared with that of MEL and MER

measures in this study.

A. Evaluation Approach

To quantitatively evaluate the performance of a given

measure for identifying the EEG circadian patterns for each

subject, we fit a sinusoidal curve with a period of 24 h to

the values of the measure calculated at each nap opportunity

for that subject. That is, considering yik as the value of

the given measure at kth time point for the ith subject,

the measure is modeled as yik = ai0 + a
i
1 cos (2πτik/24) +

ai
2
sin (2πτik/24) + ǫik; where τik refers to the time (in

hours), {ail}
2

l=0
are the regression coefficients, and ǫik is

the regression error (residual). The goodness–of–fit for each

subject is then determined by calculating the “coefficient of

determination”, R2. Moreover, the F -statistic is computed

to test whether the amplitude of the fitted curve is signifi-

cantly different from zero, and the corresponding p-value is

reported.

(a) (b)

(c) (d)
Fig. 2. Different EEG-based measures calculated for the waking state
of nap opportunities of Subject 2 (channel O1–Pz): (a) mean energy
logarithm (MEL), (b) mean energy ratio (MER), (c) entropy-based measure
C (skewness), and (d) entropy-based measure C (kurtosis). The x-axis shows
the clock time, where the CBT minimum occurs at 04:46 h (vertical dashed
lines).

To investigate the performance of the measure on the

group data, the set of values obtained for each subject is first

standardized (dividing by its standard deviation after remov-

ing the mean) to reduce the inter-subject variability. Next,

the values from different subjects are aligned relative to each

subject’s CBT minimum (the common CBT minimum time

is considered as 06:00 h). A mixed-effect regression model

is then used to fit a sinusoidal curve to the standardized

measure values from all subjects together. For each case, the

R2 and p-value are calculated to evaluate the performance

of the measure.

B. Assessment Results

The results of the quantitative assessment (i.e., R2 and p-
values, illustrated in Section III-A) of different measures in

describing circadian patterns in both occipito-parietal EEG

channels (O1–Pz and O2–Pz) for all subjects are presented

in Table I. The entropy-based measure C shows significant

circadian patterns in all cases using both skewness and

kurtosis statistics, where its overall performance is noticeably

superior to MEL and MER measures.

Fig. 2 depicts the values of different measures along with

the fitted sinusoidal curves (in red) for channel O1–Pz of

Subject 2. As can be seen, while the measure C (based on

both statistics) shows a clear circadian rhythm, the MEL

measure barely reveals any circadian patterns. Since the MEL

measure is based on the absolute energy in the frequency

band of 10–12 Hz, the depressed performance of MEL

measure can be explained by generally weak α activities seen
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in this subject’s EEG. Choosing the relative energy measure

(MER), on the other hand, improves the identification of the

circadian patterns, as shown in Fig. 2 (b). Fig. 3 presents

the values of different measures (blue ‘◦’) from all subjects

together for channel O1–Pz (after standardization), overlaid

with the average (± SD) over all subjects. The red sinusoidal

curve, in each case, presents the best fit obtained using the

mixed-effect regression model (Section III-A).

IV. DISCUSSION AND CONCLUSION

In this paper, a new method for analyzing the circa-

dian variation of the EEG (upper α-band) in the occipito-

parietal regions was presented. The scalp EEG recordings

of four healthy subjects, who underwent a 72-h USW proce-

dure, were processed using different wavelet-based measures,

namely MEL, MER and C (based on skewness and kurtosis

statistics). The proposed measure C quantifies the signal

variations based on the changes in the shape of the relative

energy distribution, resulting from a bootstrapping procedure.

Analyzing the waking state of the nap opportunities, this

novel entropy-based measure revealed clear and significant

circadian patterns in the EEG signal (using both statistics)

for each individual subject as well as for the group. In com-

parison, the MEL and MER measures, in general, showed

noticeably weaker circadian variations. Although a measure

may disclose significant circadian rhythms on a population

of subjects (e.g. MEL), it may fail to show such rhythms for

every individual.

The maximum of C always occurred close to the nadir of

the CBT cycle (within 2 h from CBT minimum), indicating

the occurrence of inhomogeneous upper-α activities near the

CBT minimum. Considering the noticeable circadian rhythm

seen in this measure, the current study clearly shows the

potential of such a measure to be used as a non-invasive

marker of circadian phase. The average time for computing

measure C was ∼22 sec1, which is low enough for real-time

implementation of the proposed method considering that the

measure is updated for each nap opportunity (here, every

2 h). More studies need to be performed to better investigate

the capability of this measure as well as the reliability of each

of the statistics used (skewness and kurtosis). We will, in

the near future, apply this measure to scalp EEG recordings

from a larger group of subjects and will analyze other brain

regions and other frequency bands.
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