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Abstract— Teleoperated robot-assisted surgery (RAS) offers
many advantages over traditional minimally invasive surgery.
However, RAS has not yet realized its full potential, and it is
not clear how to optimally train surgeons to use these systems.
We hypothesize that the dynamics of the master manipulator
impact the ability of users to make desired movements with
the robot. We compared freehand and teleoperated movements
of novices and experienced surgeons. To isolate the effects
of dynamics from procedural knowledge, we chose simple
movements rather than surgical tasks. We found statistically
significant effects of teleoperation and user expertise in several
aspects of motion, including target acquisition error, movement
speed, and movement smoothness. Such quantitative assessment
of human motor performance in RAS can impact the design
of surgical robots, their control, and surgeon training methods,
and eventually, improve patient outcomes.

I. INTRODUCTION

Robot-assisted surgery (RAS), depicted in Fig. 1A, is gain-

ing popularity over traditional minimally invasive surgery

due to its improved visualization, dexterity, and intuitive

control of the surgical instruments. However, RAS has not

yet realized its full potential in terms of patient outcomes,

and it is not clear how to optimally train surgeons to use these

systems [1], [2]. We suggest that a quantitative understanding

of how the movements of users change when they manipulate

the master of a teleoperated robot and how they adapt to its

dynamics can help to remedy these shortcomings. Combining

this understanding with computational motor control and

learning theories [3], [4] could facilitate the development of

more efficient robot design and control, and improve training

and skill assessment methods for RAS.

Surgical skill includes cognitive as well as motor aspects,

but most current training curricula invoke only task comple-

tion time and number of errors for skill assessment [5]. These

metrics do not allow differentiating between the different

components, and it has been suggested that they are not

sufficient for skill assessment [6]. RAS facilitates collection

of data about the trajectories of the surgeon’s hands and

instruments [7], [8], and therefore, there is an unexploited

potential for using computational techniques to understand

and improve skill acquisition in RAS. One prior approach
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Fig. 1. (A) Experimental setup with participant holding an externally
mounted fixture (inset) with a magnetic tracker (labeled ’t’). (B) A monitor,
placed on the surgical table, presents the experimental scene.

broke down trajectories into gestures to create a ”language

of surgery” [9]. Other studies have used Hidden Markov

Models for modeling surgery and skill evaluation [10], [11].

Our approach is unique in that we use the framework of

human motor control to quantify the effects of teleoperation

and user expertise on motor performance in RAS.

In the current study, we focus on the effects of master

manipulator dynamics on user movements. To isolate these

effects from procedural knowledge, we studied two simple

movements – reach and reversal. Reach is a movement

between two points that is characterized by a straight path

and bell-shaped velocity trajectory [12]. Reversal is an out-

and-back movement, and can be modeled as a concatenation

of two reaches in opposite directions with overlap [13].

While these movements are of limited clinical relevance in

isolation, they allow us to utilize the theoretical framework

of human motor control, and represent building blocks for

more complicated surgical motions to be studied in future

work. We presented the experimental paradigm of this study

and preliminary results in [14].

II. METHODS

A. Experimental Procedures

Thirteen volunteers participated in the experiment, ap-

proved by the Stanford University Institutional Review

Board, after giving informed consent. Ten participants were
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Fig. 2. Examples of position, velocity, and acceleration trajectories and
x-y paths of one short and one long reach (A) and reversal (B) movements.
Points of interest for quantitative movement analysis metrics are marked.

engineering graduate students who had no experience ma-

nipulating a da Vinci, and three were experienced urology

surgeons with a high volume of RAS cases (>100).

Participants sat in front of the master console of a da Vinci

Si system at Lucile Packard Children’s Hospital (Fig. 1A).

They were asked to make consecutive center-out planar

movements as fast and as accurately as possible. They held

a custom grip fixture (inset of Fig. 1A) with magnetic pose

tracker (TrakStar, Ascension Technologies). Seven of the

participants (five novices and two experts) first performed the

experiment freehand, by holding the fixture detached from

the master manipulator, and then via teleoperation. Six of

the participants (five novices and one expert) performed the

freehand and teleoperated conditions in the reverse order.

A monitor placed on the surgical table presented to the

user (via the endoscopic camera) targets and a cursor that

represented the position of the position tracker attached to the

fixture, as depicted in Fig. 1. This ensured consistent visual

feedback in both conditions. In the teleoperated condition,

the master manipulator did control the movement of the (non-

visible) patient-side manipulator, ensuring dynamics iden-

tical to standard clinical teleoperation. In both conditions,

participants could rest their elbow on the armrest, but were

not specifically instructed to do so.

The targets were centered on one of two circles with radii

30 mm (short) or 60 mm (long) in one of eight directions:

-135, -90, -45, 0, 45, 90, and 135 degrees (Fig. 1B). Target

color indicated the desired type of movement (reach or

reversal). Each combination of movement type, distance, and

direction was repeated 10 times, and the sequence of presen-

tation of all 320 trials was pseudorandom and identical for
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Fig. 3. Teleoperated reaches (A) and reversals (B) of a novice participant.

all participants and for both conditions of each participant.

The participants were instructed to complete a reach within

1 s, and a reversal within 1.5 s, and after completion of

each movement, they were provided with feedback about

the movement time. A movement was considered complete

when the cursor stayed within 5 mm from the target center

for 0.5 s for a reach movement, and the cursor returned to

within 5 mm from start point for a reversal movement.

B. Data Analysis

We sampled the x-y position information (�x) at 120

Hz, and filtered the data offline with a 4th-order low-pass

Butterworth filter with a cutoff at 6 Hz. We calculated veloc-

ity and acceleration by successive backward differentiation

and filtering. We discarded reaches that were longer than

2.5 s, and reversals that were longer than 3 s. To facilitate

comparison across movement directions, we calculated the

position (p), velocity (v), and acceleration (a) projections on

target directions, as depicted in the examples in Fig. 2 and 3.

We used the method described in [10] to identify movement

onset time (t0) and estimate the initial jerk of each move-

ment (j0). Then, we identified points of peak speed, peak

acceleration, and peak deceleration, as depicted in Fig. 2.

For analysis of endpoint error, we defined reach endpoint

�xend (and its time tend) based on the main reach motion

in each trial, without subsequent corrections (Fig. 2A), and

reversal endpoint as the maximal point of position trajectory

(Fig. 2B). For analysis of curvature of movement path, we

calculated projection of position on direction orthogonal to

target (po), and identified the point of maximal deviation

from straight line connecting start and target positions.

Next, for each movement, we calculated the following

metrics:

• Endpoint error: eend = ||�xend − �xtarget||
• Movement time: tm = tend − t0
• EE*MT: eend · tm
• Peak speed: max(|v|)
• Peak acceleration: |max(a)|
• Peak deceleration: |min(a)|
• Initial jerk: j0
• Max deviation: max(|po|)
• Sum of absolute deviation:

∑ |po|
• Peak A / Peak D: |max(a)|/|min(a)|
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Fig. 4. The effect of teleoperation and expertise on the kinematics of user movements. Markers are estimated means, and error bars are ±standard error

The last metric quantifies different aspects for reach and re-

versal movement types. In reaches, this metric quantifies the

symmetry of the velocity trajectory, and value greater than

one indicates the existence of a fused corrective movement.

In reversals, it distinguishes between a real reversal (∼0.5)

and two reaches with a pause between them (∼1).

C. Statistical Analysis

In the current paper, our main focus is on the effects of

teleoperation and expertise factors across movement types,

distances, and directions. Therefore, for all metrics except

Peak A / Peak D, we performed a 2-way ANOVA on all non-

discarded movements from both experiments of all subjects.

The degrees of freedom of all F tests were (1,7563) unless

specified otherwise. Because of the different meaning of the

Peak A / Peak D metric for reach and reversal movements,

we performed separate 2-way ANOVA for each movement

type. Statistical significance was defined as α < 0.05. When

interaction effects were statistically significant, we performed

post-hoc comparisons using the appropriate Bonferroni cor-

rection for the number of multiple comparisons.

III. RESULTS

Examples of teleoperated movement trajectories of a

novice participant are depicted in Fig. 3. Visual examination

of these trajectories reveals that the reach movements possess

bell-shaped velocity profiles, with corrective movements

when necessary [12], and reversal movements resemble two

back-and-forth overlapping reaches [13]. The majority of

the movements were completed within the required time

window. In accordance with the isochrony principle [15],

participants moved faster at long movements to maintain

similar movement time regardless to distance.

Consistent with our hypothesis, the analysis revealed sta-

tistically significant effects of teleoperation, expertise, or

their interaction in most of the metrics that we tested, as

depicted in Figure 4. The endpoint error (Fig. 4A) was

23% smaller in expert movements than in novices (F=167,

p<0.0001) and 9% smaller in teleoperated than freehand

movements (F=22.17, p<0.0001). The difference between

experts and novices was more pronounced in the teleoperated

movements, but the interaction effect was not statistically

significant (F=3.11, p=0.08). Interestingly, only the mean

teleoperated endpoint errors of experts were smaller than the

task tolerance for acceptable error of 5 mm. The movement
time (Fig. 4B) of teleoperated movements was 12% smaller

than of freehand (F=229, p<0.0001), and there was no

significant effect of expertise or interaction (F=3, p=0.08 and

F=0.03, p=0.86, respectively). Users likely moved slower in

the teleoperated condition due to the inertial and damping

effects of the dynamics of the master manipulator, and it

might partially account for the improved endpoint error in

teleoperated movements, in accordance with Fitt’s law [16].

Indeed, the EE*MT metric that reflects overall performance

(Fig. 4C) revealed that experts were 25% better than novices

(F=157, p<0.0001) without a statistically significant effect

of teleoperation (F=2.38, p=0.12). The difference between

experts and novices was even slightly larger (27%) if only

teleoperated movements are taken into account, but the

interaction effect did not reach statistical significance for the

current sample size (F=3.78, p=0.05). Notably, the perfor-

mance of experts in teleoperated and freehand conditions is

nearly identical according to this metric.

The inertial and damping effects of the teleoperator

are also likely responsible for the statistically significantly

smaller maximum speed (15%), initial jerk (36%), and peak
acceleration (25%) and deceleration (27%) in the teleoper-

ated movements versus freehand, as depicted in Fig. 4D-F

(F=325, p<0.0001; F=315, p<0.0001; F=628, p<0.001; and

F=520, p<0.001, respectively). Interestingly, there was also a

decrease of 6%, 9%, 2%, and 4% for these metrics in experts

compared to novices. This was statistically significant in all

metrics but peak acceleration (F=51, p=p<0.001; F=12.97,

p=0.0003; F=2.84, p=0.09; and F=8.37, p=0.004, respec-

tively), and the decrease in these metrics due to teleoperation

was always more pronounced in experts, yielding a signifi-

cant interaction in all metrics except for initial jerk (F=4.91,

p=0.03; F=0.01, p=0.94; F=7.81, p=0.005; and F=7.09 ,

p<0.008, respectively). Since all these metrics are related

to the smoothness of movements, these findings suggest

that experienced surgeons generally move more smoothly
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than novices, and that this difference is more pronounced

in teleoperated than freehand movements. The smoothness

of surgeon movements could be the result of a strategy that

they adopt to overcome the effects of teleoperator dynamics

on their performance, but future studies are needed to test

this hypothesis.

We expected to find increased curvature of teleoperated

movements; however, sum of absolute deviation from straight

line, Fig. 4H, was similar across different conditions (F=0.95,

p=0.32; F=0.61, p=0.47; and F=0.28, p=0.59 for the tele-

operation, expertise, and interaction factors, respectively).

Moreover, max deviation from straight line of teleoperated

movements was 7% smaller than freehand (F=17, p<0.0001),

likely due to smaller speed and acceleration. The deviation of

experts’ movements was 6% smaller than of novices (F=16,

p=0.0001), but the interaction of teleoperation condition and

expertise was not statistically significant (F=1, p=0.3).

The Peak A / Peak D metric quantifies the shape of the

velocity profile. The results of separate analysis of reach and

reversal movements are depicted in Fig. 4I-J. In reaches, a

value larger than unity indicates that the user smoothly fused

corrective movements rather than correcting after initial stop.

Our results indicate that teleoperated velocity profiles were

5% less symmetric than freehand (F1,3706=30, p<0.0001),

that experts’ profiles were 6% less symmetric than novices’

profiles (F1,3706=44, p<0.0001), and that the interaction was

statistically significant (F1,3706=6.38, p=0.01). Notably, the

teleoperated velocity profiles of experienced surgeons were

least symmetrical, indicating that when their hand comes

to stop, it is within target tolerance without additional

corrections, especially during teleoperation. Such a strategy

is particularly beneficial in a surgical context, where the cost

of making initial error is high in terms of patient outcomes.

The analysis of reversal movements reveals no effects of

teleoperation, expertise, or their interactions on the tendency

of users to momentarily stop at the target.

IV. DISCUSSION AND CONCLUSIONS

We explored the effect of teleoperation and expertise on

kinematic aspects of simple movements. We used metrics

based on the human motor control literature, and found

differences between teleoperated and freehand movements.

Interestingly, even though the tested movements were very

simple, there were pronounced differences between expert

surgeons and novices. Often, these effects were stronger in

teleoperated rather than freehand movements. Thus, RAS

expertise is apparent not only in cognitive (procedural)

aspects or automation of complex motor sequences, but also

in the basic kinematics of movement.

We hypothesize that the dynamics of the master, the

patient side robot, and the control law that couples them

could be responsible for such effects. In the current study,

because the clinical da Vinci system has effectively no haptic

feedback, only the passive dynamics of the manipulator

played an important role.

Due to space limitations, we leave computational modeling

the inertial effects outside of the scope of this paper. Such

modeling will allow us to predict the effects of teleoperation

on performance of more complicated and clinically relevant

movements like needle driving or suturing. Testing these

movements in more realistic scenarios may validate whether

our results generalize. This could have direct implications

for assessment and training of the motor aspects of surgical

skill, independent of the cognitive aspects. In addition, such

modeling can be used in improving the design and control of

surgical teleoperators. For example, current results suggest

that reducing the inertia of the master manipulator would

improve performance. Furthermore, analysis of the effect

of teleoperator tracking errors could lead to the design of

different controllers.
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