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Abstract— Significant research efforts have been undertaken 

in the last decade to develop specific cell-based therapies and, in 

particular, adult multipotent mesenchymal stem cells (MSCs) 

hold great promise toward such regenerative strategies. Bio-

materials have been widely used in reconstructive bone surgery 

to heal critical-size bone defects due to trauma, tumor resection, 

and tissue degeneration. In particular, gelatin cryogel scaffolds 

are promising new biomaterials owing to their biocompatibility. 

There is an increasing demand for MSC-based regenerative 

approaches in the musculoskeletal system. Combining stem cells 

with biomaterial scaffolds provides a promising strategy for 

tissue engineering. Our previous studies showed the possibility 

to obtain MSCs from the human ovarian follicular liquid (FL) 

that is usually wasted during in vitro fertilization (IVF). In this 

study, we tested the ability of these FL cells to grow on gelatin 

cryogel in comparison with MSCs derived from human bone 

marrow. Samples and controls were analyzed with confocal and 

scanning electron microscopes. Results demonstrated that FL 

cells could grow on the biomaterial not only on the top but also 

in the layers below till 60 μm of deepness. Data suggested that 

the observed cells were mesenchymal since positive for vimentin 

and CD-44, typical MSC markers. Successful growth of puta-

tive MSCs derived from follicular liquid on 3D gelatin cryogel 

opens potential developments in biotech and medical applica-

tions. 

I. INTRODUCTION 

The strategies to repair tissue defects are of growing im-
portance due to the increasing number of elderly people with 
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degenerative diseases. In addition to aging and diseases, tis-
sue defects can also occur due to trauma. The regeneration of 
damaged musculoskeletal tissues is a great challenge in re-
generative medicine which aims to repair and replace lost or 
damaged tissues [1,2]. 

Current tissue engineering uses 3D biomaterials in com-
bination with stem cells, since mature cells are often not 
available in sufficient amounts or quality. Biomaterial scaf-
folds are developed not only as cell carriers providing me-
chanical support, but also as promoters of cell attachment 
and proliferation. A great variety of advanced biomaterials is 
used in regenerative medicine [3]. To design a scaffold for a 
specific medical application, the material’s composition, 
architecture, structural mechanics, surface topology, and 
degradation properties have to be considered. 

In particular, for the reconstruction of bone and cartilage, 
a scaffold biomaterial should possess suitable mechanical 
strength, stiffness, or elasticity to replace the damaged tissue 
[4]. In addition to biocompatibility, scaffolds are usually 
designed biodegradable thus avoiding additional surgery: 
ideally, the scaffold is remodeled by isomorphous tissue re-
placement, so that the scaffold residence time must be nearly 
equal to the time required to synthesize a mature tissue via 
regeneration. 

Furthermore, when a biomaterial is implanted in a bio-
logical environment, a non-physiologic layer of adsorbed 
proteins mediates the interaction of the surrounding host 
cells with the material surface. The body interprets this pro-
tein layer as a foreign invader that must be walled off in an 
avascular and tough collagen sac. Therefore, the biomedical 
surfaces must be developed so that the host tissue can recog-
nize them as “self” [5]. 

Another important choice is the cell source. Adult mes-
enchymal stem cells (MSCs) pose less ethical questions and 
are less prone to tumor formation compared to embryonic 
stem cells. MSCs are multipotent, have a great ability for 
self-renewal, and can differentiate into different cell types 
including osteoblasts, chondrocytes, and adipocytes [6]. 
These properties led to use MSCs in regenerative medicine. 

Moreover, gelatin cryogel seems to be a promising new 
biomaterial for the differentiation of bone marrow stromal 
cells: onto gelatin, in a previous study, we followed a bio-
mimetic strategy where differentiated human bone marrow 
stromal cells built their extracellular matrix [7,8]. In other 
study, we found a new source of MSCs derived from human 
ovarian follicular liquid (FL) that is usually wasted during in 
vitro fertilization (IVF) [9,10]. 
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In this work, our aim was to show the combination be-
tween multipotent MSCs derived from FL and gelatin cryo-
gel scaffold as promising strategy for tissue engineering. 

II. MATERIALS AND METHODS 

A. Gelatin cryogel disks 

Bovine gelatin cryogel disks (diameter, 10 mm; height, 2 
mm) were kindly provided by Polymer Chemistry & Bio-
materials Group, University of Ghent (Belgium) [7,8,11] 
(Fig. 1). 

 

Figure 1.  Unseeded gelatin cryogel at SEM. Bar equal to 1 mm, 24× 

magnification. 

B. Cell cultures 

By transvaginal ultrasound-guided aspiration, ovarian 
follicular liquids were collected during oocyte retrieval from 
5 women of heterogeneous age (33.4 ± 4.7 years) (Prot. # 
20080002153, Bioethics Committee of IRCCS Fondazione 
Policlinico San Matteo of Pavia). After the removal of the 
cumulus oophorous-oocyte complexes, follicular aspirates 
were centrifuged in density gradient (Lymphoprep, Nycomed 
Pharma, Oslo, Norway) for 30 min at 1800 rpm in order to 
eliminate red blood cells and debris. In the middle layer is 
clearly visible the buffy coat containing the follicular liquid 
cells, which is recovered, twice washed in 10 ml of sterile 
PBS, and centrifuged for 10 min at 1200 rpm for the final 
cell collection. 

The gelatin cryogel disks were placed in Petri dishes and 
covered with 2 ml of 0.9% NaCl solution. After 24 h, this 
solution was replaced by DMEM culture medium (Sigma-
Aldrich, USA) supplemented with 10% FBS, 2 mM L-
glutamine, 100 mg/ml penicillin, and 100 μg/ml streptomy-
cin (EuroBio, France). After 24 h, 5×10

5
 FL cells were seed-

ed onto each gelatin disk in 400 μl of culture medium; after 
30 min, sufficient medium to completely cover the disks was 
added. Identical culture conditions were applied for human 
bone marrow stromal cells used as a positive control [8]. 
Cultures were maintained at 37°C and 5% CO2. After 48 h, 
non-adherent cells were discarded and the culture medium 
was changed twice a week. 

C. Immunostaining and confocal microscopy analysis 

After 15 days of culture, cells were fixed with 4% para-
formaldehyde for 3 h at room temperature, washed three 
times in PBS, and incubated for 20 min in PTA blocking 

solution (1% BSA and 0.02% Tween 20 in PBS). Cells were 
then incubated for 1 h at room temperature with a mouse 
primary antibody (diluted 1:100 in PTA) (monoclonal anti-
vimentin or monoclonal anti-CD-44, Biogenex, USA), 
washed three times in PTA, and then incubated for 30 min at 
room temperature with anti-mouse FITC-conjugated second-
ary antibody (diluted 1:100 in PTA) (Sigma-Aldrich). Then, 
the cells were washed in PBS, counterstained for DNA with 
0.5 μg/ml Hoechst 33258 (Sigma-Aldrich). Finally, the cells 
were observed by a confocal laser scanning microscope 
(Leica TCS SP2, Leica Instruments, Germany) acquiring 
images every 1.5 μm till 100 μm of depth. 

D. Scanning electron microscopy (SEM) analysis 

After 15 days of culture, gelatin cryogel disks were fixed 
with 2.5% glutaraldehyde solution in 0.1 M Na-cacodylate 
buffer (pH=7.2) for 1 h at 4°C, washed with Na-cacodylate 
buffer, and then dehydrated at room temperature in a gradi-
ent ethanol series up to 100%. The samples were kept in 
100% ethanol for 15 min, and then critical point-dried with 
CO2. The specimens were sputter coated with gold and ob-
served at 1200× magnification with a Philips XL30 FEG 
SEM (Koninklijke Philips Electronics N. V., The Nether-
lands) at secondary electron mode. 

III. RESULTS 

A. Immunostaining and confocal microscopy analysis 

Cells were seeded onto gelatin cryogel disks and cultured 
for 15 days. Adherent cells showed cytoplasmic positivity 
for vimentin (a cytoskeleton protein in mesenchymal cells) 
(Fig. 2) and surface positivity for CD-44 (a marker of mes-
enchymal cells) (Fig. 3). These data also showed that FL 
cells were able to grow till 60 μm of deepness (Fig. 3) in 
similar manner as bone marrow MSCs. 
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Figure 2.  Bone marrow MSCs (A) and FL cells (B) cultured onto gelatin 

cryogel and immunostained for vimentin (green fluorescence). Nuclei were 

counterstained with Hoechst 33258 (blue fluorescence). Bar equal to 10 

μm. 
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Figure 3.  FL cells cultured onto gelatin cryogel and immunostained for 

CD-44 (green fluorescence, A). Nuclei were counterstained with Hoechst 

33258 (blue fluorescence, B). Bar equal to 10 μm. 

B. SEM analysis 

Similarly to bone marrow MSCs, FL cells grew not only 
on the surface of the biomaterial, but also in the layers below 
and in the biomaterial gaps (Fig. 4). 

   A 

 
 

   B 

 

Figure 4.  Bone marrow MSCs (A) and FL cells (B) cultured onto gelatin 

cryogel and observed by SEM. Bar equal to 20 μm. 

IV. DISCUSSION 

Human MSCs can be isolated from several sources, in-
cluding bone marrow and adipose tissue [12,13]. MSCs pro-
liferate onto the surfaces with fibroblastic morphology and 
can differentiate into osteoblasts [14], chondrocytes [15], 
and adipocytes [16]. MSCs can be seeded onto biomaterials 
and transplanted into tissue defects [8]. 

In this study, we used two different mesenchymal cell 
populations derived from human ovarian follicular liquid and 
from human bone marrow. Results showed that mesenchymal 
FL cells grew on gelatin cryogel till 60 μm of deepness and 
had an excellent compatibility with the biomaterial surface in 
terms of expression of vimentin and CD-44 which are im-

portant markers of stemness. Bone marrow MSCs, used as 
control, showed a similar behavior. 

V. CONCLUSION 

In conclusion, FL cells showed promising affinity with 
the gelatin cryogel. These data suggest to consider the follic-
ular liquid as a new source of mesenchymal stem cells. In 
future work, we intend to use this cell-biomaterial construct 
as a tissue engineering product for the bone repair and also 
to test the ability of FL cells to produce bone extracellular 
matrix [8] under physical stimuli [17,18,19]. 
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