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Abstract—We present a two-dimensional boundary integral
formulation of nerve impulse propagation. A nerve impulse is a
potential difference across the cellular membrane that propagates
along the nerve fiber. The traveling transmembrane potential is
produced by the transfer of ionic species between the intra- and
extra-cellular mediums. This current flux across the membrane
–composed of conduction, diffusion and capacitive terms– is
regulated by passive and active mechanisms that are highly
complicated to describe mathematically from a microscopic point
of view. Based on the Hodgkin and Huxley axon model, we
propose a well-posed integral formulation based on a quasi-static
approximation amenable to time-stepping schemes and discuss
first results.

I. INTRODUCTION

Since Luigi Galvani discovered that dead frog’s legs move

when an external electrical stimuli is applied, the scientific

community has increased its interest in understanding and

modeling the effects of electricity in the human body [1].

Nowadays, we know that the operational bases of several

biological structures, such as the heart and the nervous system,

are related to electricity, i.e. current flow and voltage differ-

ences [2]. More concretely, a nerve is a cable–like bundle of a

specific kind of neurons. Each neuron has different structures

among which we distinguish the axon. Its main function is to

propagate the nerve impulse as a traveling voltage difference

across the cellular membrane [3]. Current larger computational

power allows for a significant body of research focusing on

the mathematical modeling of such processes. Indeed, given

the complexity of the phenomena at hand, techniques such

as Peripheral Nerve Stimulation (PNS) – used in regional

anesthesia [4], [5] and cardiac defibrillation [6]– can greatly

benefit from this. However, most of the literature focuses

on the propagation of the transmembrane voltage along the

axon, only tangentially discussing the chemical connection

between neurons. As a means to study the nerve conduction

problem, Rattay [7], [8], [9] proposed a formulation called

the cable equation model in which through a non–linear

PDE it is possible to obtain the transmembrane voltage, in

a one–dimensional spacial coordinate along the axon, and its

temporal evolution. An integral–based formulation combined

with a time–difference numerical scheme is proposed by Leon

et al. [10]. The authors find a solution that takes into account

the three–dimensional nature of the nerve, phenomena that

Rattay’s approach neglects.

Although Leon et al. results shown concordance with the

ones presented by Rattay, radial symmetry over the voltage

difference across the membrane is imposed, and therefore, the

transmembrane voltage is a function only of the coordinate

situated along the nerve’s axis. The way an external excitation

is introduced in the mathematical formulation is of great

importance. Classically, current point sources located over the

nerve surface are used. This formulation does not represent

practical ways to perform the stimulus. Yin et al. [11] proposed

a Finite Element Method (FEM) formulation in which a non

zero thickness nerve is considered and the external stimulus

is included as a electric field constant in space established

in practice, for example, by a pair of external electrodes.

Their results shown changes in the transmembrane potential

measured over the cellular membrane at different points,

revealing that the radial symmetry assumption does not hold.

In a nerve conduction problem, all useful information is

defined over the cellular membrane, i.e. the transmembrane

voltage and the total current flowing across it. Given the

relative sizes involved, the nature of the problem makes the

Boundary Element Method (BEM) suitable to formulate the

model. Other computational approaches, such as the finite

element method (FEM) or finite difference method (FDM),

require large amounts of degrees of freedom to calculate

the field in the entire domain when, in fact, one is only

interested on a precise solution for physical quantities defined

over the cellular membrane. In this work, we propose a

boundary integral formulation based on the so-called Multiple

Trace Formulation (MTF) introduced by Hiptmair and Jerez-

Hanckes [12], to study the axon’s behavior under an external

stimulation, performed with an electrical field produced, for

example, through extracellular electrodes. We set up a two

dimensional model, although it can be easily extended to

three dimensions. One of the model achievements is a suitable

decomposition of the extracellular electric potential in order

to include the stimulating external electric field. Our results

are in agreement with the ones presented by Yin et al., also

portraying no radial symmetry of the transmembrane potential.

II. PROBLEM MODEL

We now set main assumptions and hypotheses of our model

coming from mathematical and physiological considerations.
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A. The Cellular Membrane and the Hodgkin–Huxley Equa-

tions

Nerve impulse propagation along the axon is basically due

to the nonlinear electrical behavior of the cellular membrane

that delimits the axon. Current passing across the membrane

depends on the transmembrane voltage. There are three main

effects that contribute to the total current – capacitive, diffusive

and conductive effects – regulated by complex active and pas-

sive mechanisms that cannot be derived directly from theoreti-

cal considerations. Thus, several works based on experimental

results aim to describe the dynamics of the cellular membrane,

i.e. the non–linear current–voltage relation [9], [13]. Among

these, the first and most important model comes from the

experiments performed by Hodgkin and Huxley (H–H model)

in 1952 [14], [15], and which we use in the following. Under

this framework, the total current per unit area passing through

a point of the membrane surface, denoted Im, depends on the

transmembrane voltage difference at this point, Vm, defined

as the intra-cellular voltage minus the extra-cellular voltage

across the cellular membrane. Let us define V = Vm − Vrest
with Vrest = −70 mV , the equation that relates Im and Vm
at each point of the cellular membrane is

Im = Cm
∂V

∂t
+ Iion(V,q), (1)

∂q

∂t
= M(V,q). (2)

The term Iion (1) represents the contribution to the total

transmembrane current produced by the movement of ionic

species across the cellular membrane. It depends on the trans-

membrane voltage Vm and on the state vector q coming from

the chosen cellular membrane model. Equation (2) corresponds

to a system of non-linear ODEs that the state vector must

satisfy for each value V .

B. Geometry of the Problem

For the sake of simplicity, we consider an infinitely long

nerve composed of only one cylindrical axon running along

a given direction, for example ẑ. Based on this assumption,

we can summarize the entire problem to find the voltage and

current field in a cut perpendicular to the axon, which yields a

two–dimensional problem. The membrane of the axon, which

in a our model is reduced to a circunference centered on the

axon axis, separates R2 in two domains, namely, the intra– and

extra–cellular domains, Ωi and Ωe, respectively. The vector

n̂ denotes the outer normal of the intra cellular domain, the

cellular membrane is denoted Γ.

C. Extracellular Stimulation

We assume that the nerve is immersed in an external electric

field E perpendicular to the axon’s main direction and inde-

pendent of position and time. In particular, the independence of

the electric field E with respect to the axon’s main direction

ẑ is needed in order to avoid contradictions with the two–

dimensional approach. From an experimental point of view

this electric field represents the stimulation performed by

extracellular electrodes. It is important to notice that far away

from the axon the extra cellular potential has to be equal to

−E·x. The last condition means that the response of the nerve

to the electric field E must decay, but the potential due the

extra cellular stimulation does not.

D. Mathematical Formulation

Recalling the models proposed in [11], [10], the intra– and

extra–cellular potentials fields satisfy the Laplace equation

for each time instant. This is the so called quasi–static

approximation. Also, current continuity holds over the cellular

membrane. Nevertheless, the current across Γ depends on the

transmembrane potential through the H–H model, as discussed

in Section II, Subsection A. All the considerations and assump-

tions explained in the previous subsections are included in the

model composed by equations (3) – (5), in which we want to

find u ∈ H1(Ωi ∪ Ωe) such that,

−∇ · (σ∇u) = 0 in Ωi ∪ Ωe ⊂ R
2, (3)

−n · σe∇u = −n · σi∇u = Im on Γ, (4)

u = −E · x, as ||x|| → ∞, (5)

where σ is equal to σi and σe in the intra and extracellular

domain, respectively. As explained before, the symbol Im
corresponds to the current per area flowing across Γ. This

quantity depends on the transmembrane potential Vm through

equations (1) and (2).

III. BOUNDARY INTEGRAL FORMULATION OF THE

PROBLEM

A. Notation

Before moving forward, its first necessary to introduce fun-

damental notation recalled in our mathematical development.

Let Ω ⊂ R2 be a bounded and simple connected domain with

Lipschitz boundary Γ = ∂Ω and u ∈ H1(Ω), then we define

• γD or Trace operator: corresponds to the restriction of a

function u to the boundary Γ, i.e.

γDu = u|Γ . (6)

When applied to u, it gives the Dirichlet trace γDu.

• γN or Normal trace operator: evaluation of the normal

derivative of the function u over the boundary Γ, i.e.

γNu =
∂u

∂n

∣
∣
∣
∣
Γ

, (7)

where n is the outer normal to the boundary Γ. When

applied to u, it gives the Neumann trace γNu.

The spaces H1/2(Γ) and H−1/2(Γ) denote functional spaces

for Dirichlet and Neumann traces defined over Γ.

B. Decomposition of u in Ωi ∪ Ωe

For xi ∈ Ωi and xe ∈ Ωe, let ui ∈ H
1(Ωi) and ue ∈

H1(Ωe), i.e in the corresponding Sobolev’s spaces, such that,

u|
Ωi
= ui and (8)

u|
Ωe

= ue −E · xe. (9)
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It is important to notice that in the extracellular domain the

function u is decomposed in two terms. The first one, ue,

represents the nerve’s response to the external electric field

E and the term −E · xe is the voltage field produced by the

extra cellular stimulation. From a physical point of view, we

are considering the superposition of two potential fields that

satisfy the Laplace equation: one of them representing the

external stimulation and the other the voltage field produced

by the neural activity.

C. Integral Representation of u in Ωi ∪ Ωe

The following integral representation of u in both the intra

and extra cellular mediums holds,

u(xi) = SLiγNui(xi)− DLeγDui(xi), (10)

u(xe) = SLiγNue(xe)− DLeγDue(xe)−E · xe,(11)

for xi ∈ Ωi and xe ∈ Ωe. The symbols SLα and DLα with

α = {e, i} are the single layer and double layer potential,

respectively, defined in [16] as

SLαφ(x) =

∫

Γ

φ(y)G(x,y)dsy , (12)

DLαφ(x) =

∫

Γ

φ(y)∂nαG(x,y)dsy , (13)

where nα is the exterior normal to the corresponding domain,

with α = {e, i}. The expression G(x,y) corresponds to the

Green’s function or the fundamental solution of the Laplace

operator. It can be shown that in R2 this function is equal to

G(x,y) = −
1

2π
log ||x− y||. (14)

Taking the limit Ωi ∋ xi → x ∈ Γ and Ωe ∋ xe → x ∈
Γ along with the application of the normal derivate for both

(10) and (11) [16, Chapter 6], yields the following system of

boundary integral equations in Γ,

(
γDuα
γNuα

)

=

(
1

2
I−Kα Vα
Dα

1

2
I+K′α

)

︸ ︷︷ ︸

Cα

(
γDuα
γNuα

)

. (15)

Where α = {e, i}. In the system of boundary integral

equations (15), the matrix Cα : H
−1/2(Γ) × H1/2(Γ) →

H−1/2(Γ)×H1/2(Γ) is in fact a projector, i.e., C = C2, known

as the Calderón projector. The symbols I,Kα,Vα,Dα,K
′
α

are respectively the identity, the double layer, the single layer,

the hypersingular and the adjoint double layer operators. For

α = {e, i}, consider the following decomposition of the

proyectors Cα,

Cα =

(
1

2
I−Kα Vα
Dα

1

2
I+K′α

)

=
1

2
Id+ Aα. (16)

From (16) follows γ̃uα = 2Aαγ̃uα, where γ̃uα =
(γDuα, γNuα)

⊤. From the definition of Vm,

Vm = γDui − γDue +E · x for x ∈ Γ. (17)

Based on (5) and (17), it is possible to write

(
γDui
γNui

)

−

(
I 0

0 −σeσi I

)

︸ ︷︷ ︸

Xσ

(
γDue
γNue

)

=

(
Vm −E · x
σe
σi

E · n

)

. (18)

Replacing γ̃ui = 2Aiγ̃ui in (18) and γ̃ue = 2Aeγ̃ue in

the same equation, but multiplying by X−1σ it is possible to

obtain a formulation in which all the traces of the problem are

involved, as shown in equation (19):

(
Ae − 1

2
X−1σ

− 1
2
Xσ Ai

)(
γ̃eue
γ̃iui

)

=

(
− 1
2
(Vm −E · x,−E · n)⊤

1

2
(Vm −E · x, σeσiE · n)

⊤

)

. (19)

A variational formulation of the matricial system (19) can be

done to solve it by means the Boundary Element Method [16],

[17]. The proposed integral representation and the correspond-

ing variational formulation are based in the Multiple Traces

Formulation, by Hiptmair & Jerez–Hanckes [12]. It is importat

to notice that the normal vector n is defined as shown in Figure

1, the outer normal to the intra cellular domain.

IV. NUMERICAL SCHEME

Using the variational formulation of (19), the temporal evo-

lution equations (1) and (2), a time step ∆t and a given initial

condition for Vm and q, we adopt the following numerical

scheme to solve the problem. For n ∈ N,

At t = n∆t

• The transmembrane current Im at each element of Γ is

calculated using the variational formulation of (19). We

complete the right hand side of (19) with Vm correspond-

ing to t = (n− 1)∆t.
• Using (1) and (2), for each element and with the trans-

membrane current Im, we calculate the new transmem-

brane voltage.

Repeat until the simulation time is reached.

The existence and uniqueness at each time is ensured in [12].

To solve the time–dependent problem, a suitable algorithm

as the Euler scheme or a Runge–Kutta type methods can be

chosen.

V. RESULTS

Using a forward Euler scheme and based on the parameters

proposed in [11], [9], we are able to reconstruct the behavior

of the transmembrane potential when an external electric field

of E = 5x̂ V/cm is applied. We choose a time step ∆t =
0.015µs, an intra– and extra–cellular conductivities of σi =
5 mS/cm and σe = 20 mS/cm, respectively. The diameter

of the axon is equal to dc = 15 µm. Figure 2 shows the

transmembrane potential Vm for ten equidistant points over

the cellular membrane, distributed as shown in Figure 1.
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Fig. 1: The figure show the position of ten equidistant points

over the membrane surface. The vector field E is parallel to

the x̂ direction E = 5x V/cm.

0 1 2 3 4 5 6 7 8 9 10
−100

−80

−60

−40

−20

0

20

40

time [ms]

V
m

 [
m

V
]

 

 

1

2

3

4

5

6

7

8

9

10

Fig. 2: Results of the simulation. The model proposed is able

to recover the non–linear dynamics of the cellular membrane

when an external stimulation is applied.

VI. CONCLUSION

We present an approach based on a boundary integral

formulation for the nerve conduction problem. This technique

allows us to calculate the transmembrane potential when an

extracellular stimulation is performed by means of an electric

field. First at all, we can notice the similarity between or

results and the ones presented by Ying et al [11], therefore

validating our results. The first achievement of our mathemat-

ical formulation is how the external stimulation is included

in the model. Equation (9) reflects the decomposition of the

external electric potential between the nerve response to the

stimulus and the stimulus by itself. In this work a electric

field constant in time and space is applied, but it can easily

extended to other situations. Given any electric potential field

φ(x), satisfying the Laplace’ s equation, we can change the

term −E ·x (the electric potential field produced by a constant

in space electric field) by φ(x). Then the procedure described

in Subsection III-C is still valid and the construction of the

formulation follows in the same way. This can be useful when

studying the interaction of an arbitrary shape electrode and the

nerve, because solving the entire problem in time and space

including the electrode and the nerve could be expensive from

a computational point of view. Using our approach it is only

needed to know the voltage field produced by the external

electrode once, coming from a single computation that can be

performed using the desired numerical method.

Finally, we can notice in the results that there is no radial

symmetry in the voltage. In fact biggest difference between

the maxim peaks of the transmembrane potential over the

average amplitude of the pulses is equal to 12.31%. Then,

the differences between differents points of the transmembrane

voltage measured in surface nodes is a considerable fraction

of the amplitude of the nerve impulse.

Further improvements of the model are headed by the

development of a three dimensional approach to study the

propagation of the nerve impulse along the axon.
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