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Abstract— Most of current myoelectric prostheses are using
sequential and on-off control strategy within pattern classifica-
tion framework, which is of robustness. But it is not a natural
neuromuscular control scheme. On the other hand, there are
two difficulties to control the prosthesis proportionally and
simultaneously. First, human hand is high dimensional with
more than 20 degrees-of-freedom (DOFs); Second, extracting
such control information from EMG is hard due to signal
crosstalk and noises. This paper is aimed at proposing a new
method for proportional and simultaneous myoelectric control,
taking advantage of synergy concept. The hand motion and
corresponding forearm EMG signals were collected simultane-
ously. Principal component analysis (PCA) is used to reduce
hand motion dimension. And support vector regression (SVR)
is adopted to build the connection between hand posture and
EMG. Offline analysis validated the effectiveness of this method,
and preliminary and positive results have been obtained.

I. INTRODUCTION

Surface EMG signals (sEMG) contain abundant informa-
tion about motion intention, it is very promising in serving
as a new kind of human machine interface and thus benefit-
ing amputees. There have been many researches extracting
control information from sEMG signals for prostheses, and
most of them take advantage of pattern classification. In
this approach, the pattern recognition system is capable to
classify sEMG signals into several preset classes, and then
turn on or off a function of the prosthetic hand [1].

However, such control strategy is mainly limited in two
aspects. First, the outputs of the system are constrained by
the preset classes, and only one class can be selected at one
point. Second, a function of the prosthesis is simply turned
on or off. On the contrary, natural neuromuscular control is
proportional and simultaneous [2].

Recently, some researchers have changed the focus to
extracting proportional and simultaneous control information
from sEMG signals. Jiang et al. proposed a generative model
to obtain proportional and simultaneous control information
for a 3-DOF wrist prosthesis, and positive results have been
achieved [3]–[5]. Some other researchers have also obtained
satisfying achievements [6], [7].

The most direct idea for extracting control information for
prosthetic hand control is increasing the number of patterns
to approximate, but this results in more complex classifiers
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and reduction of classification accuracy, since human hand
is highly dexterous and has more than 20 DOFs.

Fortunately, according to neuroscience researches, human
nervous system does not control each joint of hand directly.
Instead, it controls only a parameter set with a much smaller
dimension [3]. It is similar to the control of a marionette.
The number of wires is less than that of puppet’s body
parts (See Fig.1). Different DOFs are coupled, synergetic
and can be dimensional reduced. In [8] a linear method,
principal components analysis (PCA), was used to obtain
hand postural synergies and the result turned out that the
first 2 principal components (PCs) take up to more than 80%
of the variance, which imply that control of hand posture
involves a small number of variables.

In this paper, a new myoelectric control method for
prosthetic hand is proposed which based on synergy concept.
It acts as a bridge from sEMG signals to proportional and
simultaneous estimation of hand motions. The DOFs of
hand motions are dimensional reduced by PCA. And the
relationship between hand postural and sEMG is established
using support vector regression (SVR).

II. METHOD AND MATERIALS

A. Experimental Protocol

Two subjects were involved in this preliminary experiment.
They were fully informed of the details of the experimental
procedure and agreed through an informed consent.

In the experiment, subjects were asked to grasp twelve
objects with different size and shape. These twelve objects
are listed as follow:

Fig. 1. Synergy concept implies in the control of a marionette. The control
wires are less than the parts of puppet’s body. The neural system possibly
works in a similar fashion, using a few synergies to control the highly
dexterous multi-DOF hand.
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Fig. 2. (a) Experimental setup (b) The experiment comprises four phases:
preparation, transition, holding and reset

1.Apple 2.Matchbox 3.Pop can 4.500ml bottle
5.Mouse 6.Tea caddy 7.Box 8.Cellphone
9.Key 10.Pen 11.Cup 12.Spanner
The hand posture and sEMG signals from forearm skin

are collected simultaneously. (See Fig.2(a))
The hand posture was recorded with a data glove (Data

Glove 14 Ultra, 5DT Ltd.). Fourteen hand joint angles
were recorded, including angles of MCP and PIP of four
fingers, MCP and IP of the thumb and four angles between
adjacent fingers (Thumb/Index, Index/Middle, Middle/Ring,
Ring/Little). The sampling rate of hand motion was 55Hz.

Surface EMG signals were collected using a biosignal
acquisition device(DataLOG, Biometrics Ltd.). Six channels
of signals were involved and the corresponding muscles
were:

1.Palmar longus 2.Flexor digitorum superficialis
3.Flexor digitorum profundus
4.Extensor digitorum communis
5.Extensor digiti minimi 6.Extensor pollicis longus
The sampling rate of sEMG was set to 1kHz.
The experiment includes four phases: preparation, transi-

tion, holding and reset phase, as shown in Fig.2(b).
1) Preparation: After the command of start, the subject

keeps his hand about 10 cm away from the object and
waits for the next phase. Recording is started at the
beginning of this phase.

2) Transition: After the end of preparation phase, the
subject is asked to move his hand to grasp the object.
This phase lasts 3 seconds. Note that the subject can
often finish grasp task within 1–2 seconds before the
end of this phase.

3) Holding: The subject is asked to keep the hand posture
after getting the object. Data recoding is stopped at the
end of this phase.

4) Reset: After the holding phase, the subject is asked to
put down the object and move the hand back. In this
phase, the subject can take a break to avoid muscle
fatigue.

For each object, the subject repeats three times to grasp

in order to ensure subjects’ familiar patterns grasping the
object.

B. Posture Dimensional Reduction Using PCA

In fact, the angles of joints of human hand do not vary
independently. Therefore, PCA is an ideal linear method to
find out the patterns in data of such high dimension. It is
a useful statistical technique to reduce dimension of high-D
data, and is defined in such a way that the first PC has the
largest possible variance, and each succeeding PC in turn has
the highest variance. More detailed explanation about PCA
can be seen in [9].

The mathematical form of PCA based hand posture de-
composition is:

P = PC×Q+ P̄ (1)

Here P is a hand posture. PC is a principal component
matrix, and Q is a weight vector. P̄ is the average posture in
the entire data set.

Equation 1 can be expanded as:
p1
p2
...

pn

=q1 ×


pc11
pc12

...
pc1n

+q2 ×


pc21
pc22

...
pc2n

+ · · ·

+qm ×


pcm1
pcm2

...
pcmn

+


p̄1
p̄2
...

p̄n


(2)

Here, pi represents the ith joint angle.
If we use the first 2 PCs to reconstruct hand posture, then

P ≈ P̃ = q1 ×PC1 +q2 ×PC2 + P̄ (3)

Through dimensional reduction using Equation 3, the hand
postures in high-D original space can be mapped into a 2-D
space of the first two PCs.

C. Extracting Control Information Using SVR

Once the PCs have been found, the estimation of hand
posture becomes a problem of estimating the values of the
selected PCs. EMG signals contain abundant information
about motion, hence building the connection between these
PCs and corresponding sEMG signals is desired. The sEMG
signals are preprocessed with a 300ms wide window, and the
slide increment is 100ms.

Support vector machine (SVM) is a supervised machine
learning model that uses a hypothetical space of linear
functions in a high-dimensional feature space, which is used
for regression here (so-called SVR) to construct a mapping
from sEMG signal to hand postures. As regards to regression,
the LIBSVM [10] is used in the matlab, and radial basis
function (RBF) is choosen as a kernel in the SVM. Five
fold cross validation is adopted for grid search and finding
optimal parameters.
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Fig. 3. The support vector regression (SVR) machine is firstly trained with
the values of selected principal components and corresponding EMG signals.
After training, the SVR can output the values of principal components
if given EMG signals and obtain proportional and simultaneous control
information.

The process of estimation is divided into two phases:
training phase and testing phase.

In training phase, the values of selected principal compo-
nents and the time domain feature (Mean Absolute Value,
Slope Change, Zero Cross) set of corresponding sEMG
signals are fed to SVR to get the learning machine trained.

In testing phase, the features of EMG signals are sent
to the trained SVR and the output is the estimated value
of principal components. To examine the effectiveness, the
results given by estimation are compared with the data from
data glove. The difference between these two results can be
the judgment of the performance. The process flow is shown
in Fig.3.

It is noted that since the change of angles of joints is slight
during the holding phase, the data of the hand postures is
considered constant and averaged during this period.

III. RESULTS

A. Principal Components Analysis

For the two subjects, the contribution of each PC is
given in TABLE I. And the amount of information increases
monotonically up to at least the 8th PC (See Fig.4). The first
2 PCs make contribution of more than 75% of the variance,
which can be seen as a information transmitted rate.

TABLE I
THE CONTRIBUTION MADE BY EACH OF THE FIRST FIVE PCS

PC1 PC2 PC3 PC4 PC5
Subject.1 (%) 58.9 16.1 7.6 5.6 5.0
Subject.2 (%) 65.2 13.9 10.7 5.1 2.6

The difference between the estimated and the actual values
of the weights (qi in Equation 3) for the first 2 PCs is
evaluated by index – R2, which is defined as follow:

R2 = 1− ∑n
i=1(Yi − yi)

2

∑n
i=1(Yi − ȳ)2 (4)

Here, Yi is estimated value and yi is actual value, and
i represents different objects that are grasped. The R2 is
between 0 and 1. If the value is close to 1, then the difference
is small.

Fig. 4. This figure shows how each additional PC increases the total
information transmitted rate.

Fig. 5. The estimated and the actual values of the weights (qi in Equation 3)
for the first 2 PCs. This result is obtained by averaging the results of testing
data. The red lines are actual values and the blue lines are estimated values.
The horizontal axis represents 12 grasping objects, and the vertical axis
represents the weights of the PCs.

The result of using the first 2 PCs to reconstruct hand
shape is shown in TABLE II. The average of R2 is 0.63.

B. Hand Posture Estimation Using SVR

In order to train and evaluate the SVR machine, the first
half of the recorded sEMG signals are used for training, and
the other half are used to test the feasibility of this method.
The performance of estimation is shown in the Fig.5, which
shows the difference between the estimated values and the
actual values.

A typical restoration of the hand posture using EMG
signals is given by Fig.6. The restoration uses the first two
principal components. The root mean squared residual is
0.07, which is 7% of the range of the scaled angles. The
difference between the estimated posture and the actual one
is slight.

Fig. 6. The horizontal axis represents the fourteen joints and the vertical
axis is the angle of each joint (scaled). The red line is actual angles of the
joints and the blue line is estimated ones.
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TABLE II
THE PERFORMANCE OF HAND POSTURE RECONSTRUCTION USING THE FIRST TWO PCS

Joint Tmcp Tip T/I Imcp Ipip I/M Mmcp Mpip M/R Rmcp Rpip R/L Lmcp Lpip Aver.
Subject.1 R2 0.47 0.20 0.95 0.83 0.87 0.23 0.85 0.64 0.22 0.91 0.52 0.55 0.82 0.77 0.63
Subject.2 R2 0.71 0.49 0.52 0.58 0.95 0.68 0.93 0.63 0.22 0.93 0.63 0.51 0.94 0.83 0.68

*T stands for thumb, and I for index finger, etc. T/I, I/M, M/R, R/L stand for the angles between the two fingers.

IV. DISCUSSION

In this preliminary study, a matrix decomposition
algorithm–PCA is adopted to reduce human hand motion
dimension, and a regression method–SVR instead of tradi-
tional pattern classification to create a mapping from sEMG
to hand motion. The results mentioned above demonstrate
that proposed approach is feasible and potential.

For Subject.1, the IP joints of the Thumb, Index/Middle
and Middle/Ring joint are not well reconstructed. And the
same situation happened in the Middle/Ring joint of Sub-
ject.2. The different results may relate to different habits of
grasping the objects, but in fact these joints do not greatly
influence the hand shape of grasping. It can be concluded that
it is feasible to use a small number of variables to represent
human hand posture.

An interesting phenomenon is when adding more PCs to
reconstruct hand posture, the contribution is not the only
factor to be considered. Some principal components are
crucial to the reconstruction of the angles of some joints.
For Subject.1, although the 5th PC only contributes 5% to
the variance, we find it is critical in rebuilding the angles
of Index/Middle and Middle/Ring. And the 3rd PC greatly
improve the performance of reconstruction the angle of IP
of the thumb. Hence which principal components should be
selected to reconstruct hand posture is a problem needed to
be deliberately studied.

Since most of forearm muscles involved in hand motions
are located in intermediate or deep layer, it is difficult to
use surface electrodes to collect EMG of these muscles
without influence of crosstalk and noise. It is a main factor
that reduce the estimation accuracy. We consider that two
approaches may solve this problem. First and also the direct
one is using invasive electrodes. And second is high density
multi-channel surface electrode array which may be a much
better choice. In fact, obtaining EMG signals of intermediate
or deep layer muscles using surface electrodes would be a
blind source separation (BSS) problem. If the number of
sensors are sufficient and conductive model of EMG signal
in human tissue is explicit, this problem can be solved
theoretically.

V. CONCLUSION AND FUTURE WORKS

This paper introduces a new method that is able to use
sEMG signals to reconstruct the hand posture. Principal
component analysis (PCA) is used to reduce dimension
of the multi-DOF human hand motion, and support vector
regression (SVR) machine is used to establish the connection
between sEMG signals and low-D transformed hand posture.

Preliminary experiments were taken to examine the feasibili-
ty of this method. Positive results have been obtained through
data analysis.

Since the estimation of the PC values adopts SVR machine
which is able to output a result that is continuous, this method
reveals a new way to the proportional and simultaneous
estimation of hand postures. What we desire is that the
trained system can predict those hand postures which are
not contained in the training data set. Although the results
in this experiment are not very satisfying, we will improve
the performance of hand motion estimator in future works.

Different algorithms will be tried out to pursue the desired
results. These works may include blind resource analysis to
eliminate the influence of crosstalk and thus trying to find
some more obvious relations among muscle contractions,
EMG signals and hand motions.
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