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Abstract—Powered hand prostheses with many degrees of 

freedom are moving from research into the market for prosthet-

ics. In order to make use of the prostheses’ full functionality, it 

is essential to find efficient ways to control their multiple actua-

tors. Human subjects can rapidly learn to employ electromyo-

graphic (EMG) activity of several hand and arm muscles to 

control the position of a cursor on a computer screen, even if the 

muscle-cursor map contradicts directions in which the muscles 

would act naturally. We investigated whether a similar control 

scheme, using signals from four hand muscles, could be adopted 

for real-time operation of a dexterous robotic hand. Despite 

different mapping strategies, learning to control the robotic 

hand over time was surprisingly similar to the learning of two-

dimensional cursor control. 

 

I. INTRODUCTION 

Improvements in robotics have advanced the design of 
hand prostheses with multiple degrees of freedom. But be-
cause measurement of reliable and sufficiently independent 
surface electromyography (EMG) from several muscles is 
difficult in amputees, current commercial implementations of 
hand prostheses usually employ only one or two electromyo-
graphic channels and an on-off control mechanism to switch 
between different modes of operation or grasp types.  

However, if the limitation of myoelectric sources can be 
overcome, humans are well able to use multiple muscles for 
myoelectric control, as has been demonstrated in healthy 
subjects: Radhakrishnan et al. [1] showed that humans could 
learn to control a cursor in two dimensions on a computer 
screen with their EMG activity, using isometric contractions 
of multiple muscles: Six vectors, pointing in different direc-
tions, scaled with the magnitude of EMG from six sites on 
hand and arm determined the position of a cursor. While 
initially subjects found it easier to control interfaces that 
mimic movement directions of natural limb function (biomi-
metic interface), with sufficient training, they also learned to 
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operate interfaces that were entirely unintuitive (abstract 
interface), with comparable accuracy of cursor control 
achieved with abstract and biomimetic interfaces. In addition 
it has been shown that control of hand muscles is sufficiently 
flexible to form unnatural synergies appropriate for a multi-
tude of complex abstract functions [2, 3]. This supports our 
view that experiments of myoelectric cursor control can an-
swer questions relevant to the control of prosthetic hands.  

With this study, we offer a proof of concept that com-
pares a direct posture control of an advanced hand prosthesis 
with myoelectric position control of a cursor on a screen with 
respect to training time and accuracy. We hypothesized that, 
with training, the human motor cortex could internalize and 
apply the new control schemes in both cases. We used a pro-
portional control mechanism that affords its user a high level 
of flexibility and has access to a continuum of possible hand 
postures. 

II. METHODS 

A. Participants 

Eight right-handed subjects, two female, six male, aged 
between 23 and 36 years (median: 28 years), participated in 
this study. They were free of any neurological or motor dis-
orders and gave informed consent. The study was approved 
by the local ethics committee at Newcastle University.  

B. Experimental Setup 

Participants had their left hand restrained inside a glove, 
fixed to a horizontal board, and their forearm strapped to an 
armrest (Fig 1a). EMG was recorded from four intrinsic hand 
muscles of the left hand: the abductor pollicis brevis (APB), 
the first dorsal interosseous (1DI), the third dorsal inter-
osseus (3DI) and the abductor digiti minimi (ADM). Sub-
jects controlled the myoelectric interface with isometric 
muscle contractions. 

EMG was measured using pairs of stick-on electrodes 
(Bio-logic, Natus Medical Inc., Mundelein, IL, USA) posi-
tioned on the belly of the hand muscle and an adjacent 
knuckle. An in-house fabricated (Newcastle University), 
battery-powered portable device was used to amplify the 
EMG signals between 0.1K and 5K and signals were band-
pass filtered between 30 Hz and 2 kHz. A data acquisition 
card (NI USB-6229, BNC, National Instruments, Austin, 
TX, USA) digitized the signals at a 5 kHz sampling frequen-
cy and made them available to the computer for recording 
and real-time processing. Data recording, online processing 
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and graphical user-interface were handled by Python-based 
software, developed to implement these experiments. 

For each subject, we recorded calibration data to assess 
resting levels yr and comfortable contraction levels yc for 
each EMG channel. Comfortable contractions reflected mus-
cle activity that could easily be repeated several hundred 
times. During the experiment, resulting calibration levels of 
EMG signals were used to normalize the muscle activation 
levels y extracted from raw EMG measurement (see Section 
II-C) to compute yn = (y – yr) / (yc – yr).  

C. Muscle activation estimators 

Our control algorithm consisted of a muscle activation 
estimator and a mapping strategy that linked muscle activa-
tion to the effectors. Mapping procedures differed between 
the two parts of the experiment and are described in Section 
II-E. After removing a possible signal offset from the EMG 
recordings, we used either of two methods to extract muscle 
activation levels from the raw EMG: (1) A linear filter that, 
in each update step, averaged the rectified EMG signal from 
each channel over the preceding 750 ms. (2) Or a Bayesian 
estimator using a recursive filter algorithm, proposed by T. 
D. Sanger [4]. This method modelled a desired neural drive 
signal as a combined diffusion and jump process. The poste-
rior probability density of the instantaneous neural drive was 
updated with every new sample of EMG.  

D. Robotic Hand 

 For part B of the experiment, subjects interacted with an 
improved version of the SmartHand [5], a bio-inspired hand 
prosthesis in which five motors independently actuate thumb 
abduction, thumb flexion, index finger flexion, middle finger 
flexion and a combined flexion of ring and little finger. Four 
of those motors were controlled by subjects in this study, 
whereas thumb abduction stayed at a constant level through-
out the experiment. Bidirectional communication between 
prosthesis and computer was established over a serial RS232 
communication protocol, using high level commands, built 
into the hand’s controller, to repeatedly update levels of fin-
ger flexion and monitor actual finger positions.  

E. Experimental Procedure 

Our experiment was conducted in two parts (A and B). 
Each part consisted of 320 trials, arranged in two consecu-
tive blocks of 160 trials, each of which took about 12 
minutes to complete. All subjects participated in both parts, 
with half of them starting with part A and the other half with 
part B. Subjects sat with their left hand immobilized in a 
horizontally fixed glove and controlled the task through iso-
metric muscle contractions. They were not told which muscle 
activation resulted in which action and the association was 
designed to be non-intuitive, that is, unrelated to natural hand 
function, but equal for all subjects.  

1) Part A: cursor control 
For the cursor control task, subjects sat in front of a lap-

top computer screen and controlled the position of a circular, 
yellow cursor. Targets were indicated by larger, green circles 
(Fig. 1b/d). Relaxing all muscles brought the cursor to the 

centre of the screen, whereas contraction of each single mus-
cle drove the cursor away from the centre, along its direction 
of action (DoA, see Fig. 1b). The 2D cursor position x was 
determined by the sum over all four DoA vectors scaled by 
the normalized muscle activation level yn of each corre-
sponding muscle: 
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Eight peripheral targets were presented in a pseudo-
random order, with each target appearing once in a set of 
eight consecutive trials. Four targets could be reached by 
activation of a single muscle at a level corresponding to 75% 
of comfortable contraction; the remaining four required the 
activation of at least two muscles simultaneously, albeit at a 
lower level.  

At the start of a new trial, subjects were required to relax 
their muscles in order to match a central target for a time of 
500 ms, after which a new peripheral target appeared, ac-
companied by an auditory cue (660 Hz frequency). This in-

 
Figure 1: Layout of the experiment. (a) Experimental setup. (b) Mapping of 

EMG activity for the centre-out task. Each muscle controlled movements in 

one direction of action (DoA), the linear sum of which determined the two-

dimensional position of a cursor. (c) Target postures for robotic hand con-

trol. The activation levels of each muscle proportionally controlled the 

flexion level of one robotic finger. Four target hand shapes could be 

achieved by activation of a single muscle, four others (on the diagonals) 

with two muscles. (d) Cursor movement to a target on the computer screen. 

Only the current cursor and target positions (solid circles) were visible. (e) 

Starting and sample target postures of the robotic hand. 
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dicated the start of a movement period, lasting 2 s. A second 
auditory cue (880 Hz) signalled the start of a hold period, 1 s 
long. Subjects were instructed to move and hold the cursor 
as close to the centre of the target as possible. 

2) Part B: robotic hand control 
In the robotic hand control task, subjects manipulated 

flexion levels of four fingers on the robotic hand: thumb, 
index finger, middle finger and ring/little finger; ring and 
little finger being coupled in their movement. Each one of 
these parameters was individually controlled by the activa-
tion level of one muscle. Relaxing all muscles opened the 
hand, which was used as a starting position. Targets in 2D 
space were replaced by target postures, appearing in a pseu-
do-random order, like the positional targets of part A. In 
analogy to the cursor task, four target postures could be 
achieved with activation of a single muscle at 90% of com-
fortable contraction, whereas the other four required simul-
taneous activation of two muscles at a lower level (Fig. 1c). 
Starting posture (open hand) and target postures were in-
structed by photographs of the posture on the laptop screen. 
The robotic hand was mounted about 40 cm behind the 
screen, so that subjects could comfortably observe both (Fig. 
1a). Trial structure matched this of part A. 

3) Performance measure 
At the end of each trial, following the hold-period, in 

both experiments 1A and B subjects were presented a score 
between 0 and 100, reflecting their performance during the 
last trial. We measured Euclidean distance of either the cur-
sor or the current hand posture (in its four-dimensional space 
of finger flexions) to their respective targets. To achieve a 
score greater than zero, subjects had to get closer to the tar-
get. Thus, the impact of large errors on the score was limited: 
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where d(C,T) is the Euclidean distance, averaged over the 
hold-period, between the two-dimensional cursor and target 
positions (part A) or between current and target hand pos-
tures, as represented by vectors of four flexion levels (part 
B). d(S,T) denotes the Euclidean distance between starting 
and target position or posture. 

III. RESULTS 

Offline analysis was done using MATLAB (MathWorks, 
Natick, MA, USA). 

A. Cursor control vs. robotic hand control 

We evaluated learning of cursor and hand control task 
over time. Fig. 2 shows average learning curves over two 
consecutive blocks (160 trials each) for both parts of the 
experiment. Markers indicate score averages over sets of 32 
trials, pooling all scores from all subjects. 

During the first block, a steady improvement in task per-
formance could be observed for both task conditions, cursor 
and robotic hand control. At the end of the second block, 
however, scores of the cursor control task deviated signifi-

cantly from those in hand control, where task performance 
peaked at a somewhat lower level. 

B. Muscle Tuning 

 Muscle tuning functions describe the relation between 
task goals and muscle activation. In our case they revealed 
how subjects’ behaviour was following the relationship of 
myoelectric activity and the control output imposed in the 
experiment. Fig. 3 shows median muscle activation levels, as 
a percentage of the level equivalent to target distance, plot-
ted as a function of target. Targets were ordered according to 
direction for cursor control (part A) or an equivalent order of 
postures (cf. Fig. 1c) for hand control (part B). To average 
over tuning functions for different muscles, they were shifted 
so that a muscle’s DoA (part A) or the equivalent posture 
(part B) corresponded to 0° or posture 0, respectively. 

During the early learning phase (Fig. 3a), tuning func-
tions for cursor control (grey circles) were broad, had an 
elevated baseline and EMG levels showed high variability 
for targets far from the muscles’ DoA. In the early stages of 
hand control (black squares) variability in the control signals 
for finger flexions, unrelated to the target posture (relative 
posture indices < -2 or > +2), was better contained.  

At the end of the both parts of the experiment (Fig. 3b), 
median muscle tuning was close to a minimal activation pat-
tern (light grey line) that only employed muscles essential for 
task success. Tuning functions for cursor and hand control 
were almost identical, with little variability in EMGs that 
were not relevant for task success. 

IV. DISCUSSION 

We translated a paradigm for myoelectric cursor control 
to direct proportional control of a multi-fingered hand pros-
thesis. The four-muscle control scheme of the two-
dimensional cursor task transferred well to real-time control 
of a robotic hand with similar dynamics of subjects’ learning  
and similar initial levels of accuracy for both cursor control 
(experiment 1A) and robotic hand control (experiment B). 

 
Figure 2: Myoelectric control learning curves.  Average scores, indicative 

of task performance, based on Euclidean distance to target position (cursor 

control, grey circles) or target posture (hand control, black squares), over 

two consecutive blocks of 160 trials each. Averages are computed over 32 

consecutive trials for each subject. Asterisks mark significant differences 

between measures for cursor and hand control tasks within a set of 32 trials 

(unpaired t-test, p < 0.05, corrected for multiple comparisons). 
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This implies that control mechanisms, relevant to the use 
in prosthetic hands, can be studied in the well-established 
and easily implementable framework of centre-out cursor 
movements. We further believe, a myoelectric-controlled 
cursor task could be a valuable and inexpensive tool to fa-
miliarize patients with myoelectric control and identify the 
most promising sets of muscles, prior to the fitting of a myo-
electric prosthesis. In this line, virtual reality tasks have al-
ready been suggested to train patients in the control of myoe-
lectric prostheses using a classification approach [6]. How-
ever, the continuous feedback, offered by a proportional con-
troller may lend itself better to biofeedback training.  

During hand control (part B of the experiment), target 
postures could only be matched by exactly one combination 
of muscle activities, while deviations from this were always 
detrimental to task performance. This might explain, why, at 
an early stage, activation of non-relevant muscles was better 
suppressed than in cursor control (part A). Redundancy in-
herent to the mapping scheme of cursor control, on the other 
hand, could be exploited so that the suboptimal behaviour 
would not overly reduce success in the cursor task [1]. This 
could be achieved by partial co-activation of muscles with 
opposite DoAs or even muscles with perpendicular DoAs. 
Exploiting this redundant mapping in part A gave cursor 
control a possible advantage over part B. The possibility to 
match cursor and target directly on the screen may have fur-
ther contributed to a higher accuracy in cursor control to-
wards the end of the experiment. 

A one-to-one mapping of muscles to actuators of a robot-
ic hand, as demonstrated in our study, may not be viable for 
prosthetic hands with many degrees of freedom, if only few 
muscles are available for stable recordings. A large number 
of controlling muscles also may increase necessary training 
time and cognitive effort.  Hence, for real-life prosthetic ap-
plications, a more promising path of action might try to re-
duce the dimensionality in the prosthesis’ control space for 
common hand movements [7]. In spite of the reduced com-
plexity, this can still allow the access of a continuum of rele-

vant hand postures: Matrone et al. used principal component 
analysis over 50 different grasps of a prosthetic hand to iden-
tify two components that were sufficient to grasp a large va-
riety of objects [8, 9]. This approach can further constrain 
hand configurations so that unfavourable postures e.g., paths 
of different fingers crossing each other, will be avoided. 
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Figure 3: Tuning functions. (a) First 80 trials, (b) last 80 trials of a total 320 trials in experiment 1. Relative EMG activation levels during the hold period 

over different target positions/postures. Medians were calculated over all muscles and subjects; error bars display 25th and 75th percentiles. Targets are given 

as directions relative to a muscle’s DoA (cursor control; grey circles) or as an equivalent relative posture according to the arrangement in Fig. 1c (hand 

control; black squares). The light grey step function indicates the minimal activation pattern of muscles that could achieve perfect performance.  
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