
  

  

Abstract— This paper proposes a modification of the 

subspace correlation cost function and the Recursively Applied 

and Projected Multiple Signal Classification (RAP-MUSIC) 

method for electroencephalography (EEG) source analysis in 

epilepsy. This enables to reconstruct neural source locations 

and orientations that are less degraded due to the uncertain 

knowledge of the head conductivity values. An extended linear 

forward model is used in the subspace correlation cost function 

that incorporates the sensitivity of the EEG potentials to the 

uncertain conductivity value parameter. More specifically, the 

principal vector of the subspace correlation function is used to 

provide relevant information for solving the EEG inverse 

problems. A simulation study is carried out on a simplified 

spherical head model with uncertain skull to soft tissue 

conductivity ratio. Results show an improvement in the 

reconstruction accuracy of source parameters compared to 

traditional methodology, when using conductivity ratio values 

that are different from the actual conductivity ratio. 

 

I. INTRODUCTION 

In epilepsy, an accurate information on the location of 
epileptic focus in the brain can be used to plan surgery for its 
removal [1]. The estimation of the neural source generators 
responsible for e.g. epileptic spikes, starting from 
electroencephalogram (EEG) data, is however subject to 
some sources of errors: noise in measurements, forward 

modeling errors and the ill-posedness of the inverse problem.  

A first class of model-related errors are source modeling 
errors. A current–dipole source is suitable because it 
represents a population of active pyramidal cells at the 
microscopic level, but is only valid if the activity itself is 
limited to a focal region and if it stays focal over a period of 
time [2]. For patients suffering from epilepsy, focal brain 
activity is mostly the case. In order to reduce these source 
modeling errors, it is possible to use more complex source 
models. Distributed source models can represent an 
alternative where the inverse problem is highly 
underdetermined and regularization methods are required, 
e.g. [3]. Another source modeling approach consists of 
limiting the parameters of the multidipolar sources to be less 
than the number of electrodes e.g. the Recursively Applied 
and Projected–MUltiple SIgnal Classification (RAP–

MUSIC) algorithm [4].  
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A second class is the possible inaccurate geometrical 
modeling of the head [5]. When using patient-specific head 
models based on T1-segmented magnetic resonance images, 
the geometrical modeling error is limited. Another type of 
forward modeling errors can be electrode misplacements [6]. 
A fourth type of modeling-related errors are head models 
where the anisotropic behavior of the conductivity is not 
incorporated. Using diffusion tensor magnetic resonance 
imaging it is possible to estimate the nerve bundle direction. 
[7,8] have shown that anisotropically conducting 
compartments have a significant impact on EEG and MEG 
activity. Finally, large errors are introduced due to the use of 
inaccurate absolute conductivity values of the several tissues 
in the volume conductor head model, e.g. [9,10]. The 
uncertain conductivity values, more specifically the ratio of 
the skull conductivity to the conductivity values of the soft 
tissues, have a large influence on the EEG dipole localization 

accuracy and are the most dominant source of error [11].  

A method was recently proposed for reducing the impact 
of uncertain conductivity values onto the solution of the EEG 
single dipole localization problem when using a spherical 
head model [12] and realistic head model [13]. The least 
squares cost function was modified and the iterative selection 
of a subset of electrodes in the EEG cap was introduced. The 
method enables to recover neural source locations and 
orientations that are robust to the uncertain skull to soft tissue 
conductivity ratio. Possibilities for recovering a limited 
number of neural sources in a conductivity robust way were 
given. This paper aims at studying the use of a modified 
subspace-based method, that is suitable for reconstructing a 
limited number of sources in the brain through modification 

of the RAP-MUSIC method.   

 

II. SUBSPACE ELECTRODE SELECTION METHODOLOGY  

A. Subspace correlation cost function 

In this paper, we assume that electrical activity in the 
brain is modeled by equivalent current dipoles. This 
assumption ensures a unique solution to the EEG inverse 
problem [14], when reconstructing the source parameters 
from the EEG potentials recorded at various electrodes 
placed at the surface of the head. The estimation of multiple 
dipole parameters is known as a difficult nonlinear 
minimization problem because the cost functional contains 
many local minima. The traditional RAP-MUSIC cost 
function for the reconstruction of the l-th dipole position, is 

given by the following relation:  

            (1) 
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with L(r) being the lead field matrix of the forward model 
solution, <I>s the signal subspace of the spatio-temporal 
measurement matrix. Here, IJ'.4.,_, = (/ - A

1
_

1
AL) is the 

projection matrix constructed by A1_1, a matrix containing in 
each column the topographies of the already found l-1 

sources; At is the Moore Penrose pseudo inverse matrix. 

The subspace correlation term subcorr() 1 computes the 
cosine of the first principal angle between the subspaces 
spanned by the columns of L(r) and <I>s. The computed value 
here is 0 if the two subspaces are orthogonal and a number 
between 0 and 1 if the two subspaces have at least one 
dimensional subspace in common. The Nelder-Mead simplex 
methodology is used here for the maximization in (1 ). 

B. Sensitivity analysis 

An approach for reducing the propagation of the 
uncertainty on the inverse solutions is thus needed. A 
sensitivity analysis can provide insights onto the impact of 
the conductivity values on the EEG potentials at the different 
sensors located on the scalp. From the semi-analytical 
solution of the EEG forward problem in [15], we can write 
the EEG potential along the N electrodes at a single instant as 
Vm = L(r).d with L E RNxJ the lead field matrix and d E R3 

the dipole orientation. When having actual dipole locatio_? 

ract, actual dipole orientation dact, actual conductivity ratio X 
and we assume that the measurements have no noise and that 
the other modeling errors are negligible, then we have 

(2) 

However, the assumed conductivity ratio is uncert:in a~d 

thus different from the actual conductivity ratio X ¢ X. 
When solving the inverse problem, the measured EEG 
potentials are best approximated by 

(3) 

with the recovered dipole location r * and dipole orientation 
d*. The term on the right in (3) .3an be written as a first order 

Taylor expansion [13] around X with ract, dact: 

Vm(ract'dact'X) + (X - X) avm(ract'dact'X)I (4) 
ax x=x 

where the second term depends on the propagation of the 
uncert:inty_ to the forward problem. The Taylor coefficient 
a = X - X which is unknown, can be approximated by 
fitting the data set Y=Vmeas-Vm(r,d,X) with 

s = avm<ract,dacl'x)I , see also [12,13]. 
ax x=x 

The following transformation is performed so to obtain a 
forward linear model to be used in the cost function: 

L(r) ~ L(r) + aW (r) (5) 

with W(r) ERN•3 being the derivative of the lead field matrix 

to t e con uct1v1ty rat10 1.e. w (r) = -- . y se ectmg h d . . . . JL(r)I B l . 

ax x=x 
sensors less influenced by the sensitivity, it is possible to 
reconstruct the dipole parameters in a more accurate way. 

The selection is intended to reduce the propagation of the 
uncertainty on the inverse solutions. Two approaches can be 
used here to compute the sensitivity of the potentials to the 
conductivity: a direct differentiation of the forward model 
solution and the differentiation using the principal vector U 
of the subspace correlation function i.e. 8U/8X. Fig. 1 show a 
2D mapping of the sensitivity using both approaches for 
dipoles situated in the center of the brain. One can identify 
the sensitive sensors (labeled between 1 and 27) from these 
figures. 

µ m l! 

"' 

Figure I. Sensitivity of potential values (left) and principal vector U 
(right) towards the conductivity ratio in 2D. 

C. Subspace Electrode Selection and the RAP-MUSIC 
methodology 

From the information provided by the sensitivity analysis, 
we alter the traditionally known RAP-MUSIC subspace­
based cost function and incorporate the sensitivity of the 
potentials to the uncertain conductivity ratio X. The dipole 
positions can then be reconstructed by maximizing the 
following cost function: 

r; = argmax(subcorr(II~ (L(r) + aW(r)),II~ <I> 8 ) 1) (6) 
r ~ ~ 

based on cost function (1) and transformation (5). The 
iterative scheme of the methodology is shown in Fig. 2. 

The proposed methodology contains several steps that are 
iteratively carried out until the p-th dipole is recovered. In 
this flowchart, l (l= 1, ... ,p) is the dipole number, while k is 
the iteration number in the maximization of the subspace 
correlation function. 

Step 1: Evaluation of the start value r
1
(0) in the forward 

model, yielding Vm(r1<
0». An assumed conductivity ratio 

A 

Xis used here. Initialize k=O. 
Step 2: Computation of the principal vector U using the 

potential value vm (r?». 
Step 3: Calculation of the sensitivity of the principal vector 
values to the conductivity ratio for a certain assumed 
conductivity ratio value X: 

Y(r?» = aU(r?»I (7) 
ax x-x 

in the k-th iteration for fixed r?). 
Step 4: Selection of the Ns least sensitive electrodes, based 
on the values of each electrode in (7). For the selection, we 
set a certain threshold for sensitivity values, in order to 
obtain a subset of potentials that are used in the inverse 
procedure. This step defines the selection operator in the k-th 
iteration for selection of the least conductivity dependent 
sensors. 
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Step 5: Calculation of the Reduced Conductivity 
Dependence (RCD) subspace-based correlation cost 
function: 

subcorr(il'.4.
1
_
1 
(L(r) + aW(r)),sel(il'.4.

1
_
1 
<l>s))1 (8) 

Step 6: Based on the value (8), the next iterate r
1
(k+I) is 

calculated. If the termination criteria of the maximization 
procedure are met, then stop the recovery of the !-th dipole. 
Otherwise, update k=k+ 1 and go to step 2. If the number of 
dipoles is reached, then stop the algorithm. 
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Figure 2. Iterative scheme of the subspace electrode selection 
methodology applied in RAP-MUSIC algorithm. 

III. RESULTS AND DISCUSSION 

A. Simulation setup 

The performance of the subspace electrode selection 
method in case of reconstruction of a limited number of 
multiple dipoles, is investigated by performing numerical 
experiments. Synthetic EEG data is generated with dipoles 
showing rhythmic activity ( cosinusoidal waveform between 
8 and 10 Hz) and dipoles representing an epileptic spike of 
0.2s with onset at 0.4s is used. Using the forward model with 

certain actual conductivity ratio value X, a spatio-temporal 
matrix is generated for an EEG electrode setup (standard 10-
10 setup with 27 electrodes): 

Vmeas = [ L(~),L(rz), ... ,LCfp) ][ d1 ,d2 , ••• ,dp r (9) 

with di = iiii. ui is a unit-norm dipole orientation vector 

and Si a n1-dimensional vector expressing the waveform of 

the dipole strength of n1 time samples for each dipole. 
The signal subspace <P s is calculated from the 

autocorrelation matrix Rv = E(VmeasV~as) where E() is 

the mathematical expectation. 

B. Recovery error reduction 

We solve the EEG inverse problem for multiple assumed 
conductivity ratios starting from an EEG data set generated 

with actual X value. Fig.3 shows the results for p=4 dipoles 
when recovering the dipoles using the traditional RAP­
MUSIC method and when using the methodology elaborated 
in steps 1-6 of section IIC. The accuracy is measured 
through the dipole position error (DPE) which is the 
difference between the actual dipole location ract that is 
associated to the measured EEG data and the recovered 
neural dipoles r * calculated using that measured EEG 

dataset: DPE = llr -rac,t The DPE increases when the 

assumed conductivity value is more different from the actual 
conductivity ratio. The results show that the DPE is overall 
reduced when recovering the 4 dipoles using the RCD based 
methodology. 
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Figure 3. Average dipole position errors when recovering p~4 dipoles 

starting from EEG data with X ~1/20. The number of selected sensors is 
N,~13. 

C. Noise robustness 

EEG spatio-temporal data was generated with added zero 
mean white Gaussian noise. The noise level is defined as 
n=LNRMS· DPE are shown in Fig. 4 for different noise 
levels. The EEG inverse problem is solved in case no 
singular value decomposition or principal component 
analysis (PCA) is applied, while in the second case, a spatio­
temporal dataset is used. We observe that the cost function 
(8) is noise robust. The fitting constant a is much better 
approximated when using as data U and Y. The principal 
vector and corresponding sensitivity (7) are less affected by 
noise. An efficiency ranging from 60% to 75% is observed 
in the reconstruction accuracy. Fig. 5 shows the total dipole 
position errors in case a different number of selected subsets 
Ns is employed in step 4 of section IIC. The total dipole 
position error is the summation of all DPE of the different 
dipoles. 

When reducing the number of selected sensors, the 
accuracy of reconstruction is increased. Note that the 
number of selected sensors may not be reduced so that the 
inverse problem becomes ill-posed. Moreover, in case of 
noise levels higher than 0.2, the simulation results show that 
the reduction needs to be limited until Ns=N/2. The iterative 
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procedure follows a path that is less affected by the 
uncertain parameter values. 

The total amount of sensors N can be used throughout the 
algorithm but in each iteration, when calculating the cost 
function, Ns sensors are used. Moreover, the Ns sensors vary 
when solving the inverse problem. These selected sensors 
depend on the dipole location and orientation in the k-th 
iteration of the minimization process. 
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Figure 4. Dipole position error for p~I dipole using spatial-only EEG data 
and spatio-temporal EEG data of the same dipole with the time signal being 

a spike in head model with X ~112~, while the assumed conductivity ratio 
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Figure 5. Total diople position error for p~J dipoles in case of different 

selected subsets Ns for different noise levels in the EEG data. X ~1/13 
while X~l/50. 

IV. CONCLUSION 

We modified the subspace correlation cost function and 
incorporated selection of the electrodes within the 
methodology, based on the sensitivity to the uncertain 
conductivity which is computed using the principal vector. A 
numerical study was performed in a three-shell spherical 
head model and shows a reduction of the dipole position 
errors compared to the traditional approach. The 
methodology is able to localize a limited number of dipoles 
in an accurate way. Moreover, the methodology is robust to 
noise in the measured EEG data. The presented methodology 
can also be applied onto other inverse problems where 
uncertain parameters are present in the forward modeling. 

ACKNOWLEDGMENT 

G. Crevecoeur is a postdoctoral researcher of the FWO­
Flanders. 

REFERENCES 

[I] K. Kaiboriboon, H.O. Luders, M. Hamaneh, J. Turnbull, S.D. Lhatoo, 
"EEG source imaging in epilepsy-practicalities and pitfalls," Nature 
Reviews Neurology, vol. 8, pp. 498-507, 2012. 

[2] J.C. de Munck, B.W. Van Dijk, and H. Spekreijse, "Mathematical 
dipoles are adequate to describe realistic generators of human brain 
activity," IEEE Transactions on Biomedical Engineering, vol. 35,pp. 
960-965, 1988. 

[3] S. Baillet, J.C. Mosher, and R.M. Leahy, "Electromagnetic brain 
mapping," IEEE Signal Processing Magazine, pp. 14-30, 2001. 

[4] J.C. Mosher and R.M. Leahy, "Source localization using recursively 
applied and projected (RAP) MUSIC," IEEE Transactions on Signal 
Processing, vol. 37, pp. 332-340, 1999. 

[5] B. Vanrumste, G. Van Hoey, R. Van de Walle, M. D'Have, I. 
Lemahieu, and P. Boon, "Comparison of performance of spherical and 
realistic head models in dipole localization from noisy EEG," Medical 
Engineering Physics, vol. 24, pp. 403-418, 2002. 

[6] P.H. Laarne, M.L. Tenhunen-Eskelinen, J.K. Hyttinen, and 
H .J .Eskola, "Effect of EEG electrode density on dipole localization 
accuracy using two realistically shaped skull resistivity models," 
Brain Topography, vol. 12,pp.249-254,2000. 

[7] J. Haueisen, D.S. Tuch, C. Ramon, P.H. Schimpf, V.J. Wedeen, J.S. 
George, and J .W. Belliveau, "The influence of brain tissue anisotropy 
on human EEG and MEG," Neuroimage, vol. 15, pp. 159-166, 2002. 

[8] C.H. Wolters, A. Anwander, X. Tricoche, D. Weinstein, M.A. Koch, 
and R.S. MacLeod, "Influence of tissue conductivity anisotropy on 
EEG/MEG field and return current computation in a realistic head 
model: a simulation and visualization study using high-resolution 
finite element modeling," Neuroimage, vol. 30, pp. 813-826, 2006. 

[9] J. Haueisen, C. Ramon, M. Eiselt, H. Brauer and H. Nowak, "Influence of 
tissue resistivities on neuromagnetic fields and electric potentials studied 
with a finite element model of the head," IEEE Transactions on 
Biomedical Engineering, vol. 44, pp. 727-736, 1997. 

[10] S. Vallaghe, and M. Clerc, "A global sensitivity analysis of three- and 
four-layer EEG conductivity models," IEEE Transactions on 
Biomedical Engineering, vol. 56, pp. 988-995, 2009. 

[I I] S.M. Plis, J.S George, S.C. Jun, D.M. Ranken, P.L. Volegov, and 
D.M. Schmidt, "Probabilistic forward model for 
electroencephalography source analysis," Physics in Medicine and 
Biology, vol. 52, pp. 5309-5327, 2007. 

[12] B. Yitembe, G. Crevecoeur, R. Van Keer, and L. Dupre, "Reduced 
Conductivity Dependence method for increase of dipole localization 
accuracy in the EEG inverse problem," IEEE Transactions on 
Biomedical Engineering, vol. 58, pp. 1430-1440, 2011. 

[13] G. Crevecoeur, V.M. Restrepo, S. Staelens, "Subspace electrode 
selection methodology for the reduction of the effect of uncertain 
conductivity values in the EEG dipole localization: a simulation study 
using a patient-specific head model," Physics in Medicine and 
Biology, vol. 57, pp. 1963-1986, 2012. 

[14] P.H. Schimpf, C. Ramon, and J. Haueisen, "Dipole models for the 
EEG and MEG," IEEE Transactions on Biomedical Engineering, vol. 
49, pp. 409-418, 2002. 

[15] Y. Salu, L.G. Cohen, D. Rose, S. Sato, C. Kufta, and M. Hallett, "An 
improved method for localizing electric brain dipoles," IEEE 
Transactions On Biomedical Engineering, vol.37, no.7, pp. 699-705, 
1990. 

6194


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

