
  

 

Abstract— Modulation of neural activity through electrical 

stimulation of tissue is an effective therapy for neurological 

diseases such as Parkinson’s disease and essential tremor.  

Researchers are exploring improving therapy through 

adjustment of stimulation parameters based upon sensed data.  

This requires classifiers to extract features and estimate patient 

state.   It also requires algorithms to appropriately map the 

state estimation to stimulation parameters.  The latter, known 

as the control policy algorithm, is the focus of this work.  

Because the optimal control policy algorithms for the nervous 

system are not fully characterized at this time, we have 

implemented a generic control policy framework to facilitate 

exploratory research and rapid prototyping of new 

neuromodulation strategies. 

    

I. INTRODUCTION 

Neurostimulators are used to treat symptoms of 
neurological diseases such as Parkinson’s disease and 
essential tremor; this therapy is called deep brain stimulation 
(DBS).  A key challenge that must be overcome to provide 
effective DBS therapy is optimizing selection of stimulation 
parameters (e.g., amplitude, pulse width, and frequency). 

Currently available neurostimulators require that the 
clinician be in the loop to program the stimulation 
parameters.  This largely empirical procedure is often very 
time-consuming and programming sessions may be weeks or 
months apart.  Patients receive a patient programmer that can 
be used to make limited adjustments in the interim. 

Many bioengineering fields are exploring closed loop 
therapies, such as cardiac pacing [1], diabetes [2], and 
respiration [3].  In the case of neuromodulation, this is also a 
logical approach to explore. While manual adjustment is 
available today, automaticity might potentially provide 
improved response time and thereby react before symptoms 
manifest externally.  In addition, turning off the device when 
not required is a pathway to increasing device longevity. 
Finally, from the patient’s perspective, we wish to eliminate 
the burden of adjustment that requires device interaction. 

Efforts are underway to provide automaticity in 
implantable neurostimulators [4].  Referencing Fig. 1, 
sensing is a required capability to allow the device to 
measure signals that reflect changing conditions in the 
environment.  Sensors within the device obtain signals from 
the nervous system directly or indirectly.  Local field 
potentials (LFPs) are examples of signals measured directly 
from the brain.  Inertial signals are a more indirect surrogate 
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for brain state [5]. Another necessary component is a 
classifier or classifiers to extract information from sensed 
signals to provide a state estimate [6].  Once a state estimate 
is determined, a control policy algorithm must be present to 
make appropriate decisions. Determining the optimal control 
policy requires understanding how transfer functions in the 
nervous system map to desired outcomes, and then applying 
that understanding into a dynamic method of parameter 
control. Given the outstanding questions about 
neuromodulation mechanisms of action, we see a need to 
implement a flexible research tool for rapid prototyping and 
hypothesis verification; a prototype and pilot results of such 
a system is the focus of this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Model of a closed-loop neuromodulation system 

 

II. CONTROL POLICY CONSIDERATIONS 

There are many factors that need to be considered for the 
design of a control policy algorithm for a closed-loop 
neurostimulator.  This section summarizes these factors.   

A. Optimal Algorithms Largely Unknown 

Development of control policy algorithms for closed-
loop neuromodulation systems is in a very early stage.  
Although there are candidates for control policies [7, 8, 9], 
the desire remains to provide a flexible method to develop 
and test new control policy algorithms.  This method 
provides the ability to explore a space that is largely 
unknown.      
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B. Firmware Verification and Validation 

The classifiers and control policy algorithms discussed 
are implemented in the firmware of an implantable 
neurostimulator. This firmware must pass a rigorous set of 
testing before it is allowed to be used in a clinical setting.  If 
each control policy algorithm requires new firmware, each 
firmware version requires a full cycle of development, 
verification, test, and approval.  Avoiding this burden is 
highly desirable. 

C.  Enabling Broad Hypothesis Testing    

There are many opportunities to be explored in closed-
loop neuromodulation.  While it is not efficient to provide a 
different set of firmware for each study, we do wish to 
enable the rapid exploration of several hypotheses to enable 
identification of the most promising opportunities. 

III. METHODS 

This section presents a general-purpose framework based 
upon state machines to allow the user to build control policy 
algorithms in an implantable neurostimulator.  These state 
parameters can be programmed quickly and with much lower 
risk than a code update. This flexible framework allows the 
control policy algorithm to be readily modified, such as 
updating the number of states and their transitions (within 
limits of the finite memory of the embedded system). 

This strategy for development of control policy 
algorithms was chosen over linear methods, such as a PID 
(proportional-integral-derivative) controller, for a number of 
reasons.  Although a PID controller is often considered to be 
the best controller in the absence of knowledge of the 
underlying process, in practice PID controllers can have 
shortcomings when systems are nonlinear or dynamic; this is 
obviously a consideration in the nervous system.  

Please note our goal is to demonstrate a versatile tool for 
investigating nervous system models rather than to show that 
a particular control strategy is the best for a particular 
outcome.  Our key point is that model-based control may be 
accommodating to a better understanding of underlying 
mechanisms of action, where the control policy must react to 
different modes of process behavior. 

A.  Degrees of Freedom for Delivery of  Stimulation 

Stimulation parameters that are adjustable in the 
neurostimulator are as follows: 

 Contacts – anode and cathode (incl. the case) 

 Amplitude (with programmable limits) 

 Pulse width 

 Frequency 
 

Four different stimulation programs can be 
preprogrammed into the device (P1-P4).  Each of these 
mutually exclusive programs contains a separate set of the 
above-listed parameters. 

The options that are available to the control policy 
algorithm for adjusting stimulation are as follows:  

 Program switch (select one of 4 programs P1-P4) 

 Turn stimulation OFF 

 Turn stimulation ON 

 Increment stimulation amplitude (INC) 

 Decrement stimulation amplitude (DEC) 

B. Sensing and Classifiers 

The neurostimulator has a bioelectrical sensor and an 
inertial sensor. Spectral features are extracted from the 
bioelectrical sensors [4] and piped into classifiers that can be 
trained using machine learning techniques [6].  Posture and 
activity features can be extracted from the inertial sensors.  
The outputs of these classifiers are the inputs to the control 
policy algorithm which controls the stimulation engine.    

C. State-Based Control Policy Algorithms 

To provide flexibility in designing, testing, and 
modifying control policy algorithms, we developed a system 
whereby each algorithm is a collection of states.  Each state 
has entry actions that can affect stimulation and exit 
conditions that are selectively based upon classifier states 
and the state of a timer.  Fig. 2 depicts a dialog box that 
enables the user to create one such state.  

The exit conditions enable a transition from the current 
state to another state.  The user can build a control policy 
algorithm by creating states and connecting them together to 
form a state machine. 

The Entry Actions section of the dialog in Fig. 2 contains 
fields that enable the user to select actions to control delivery 
of stimulation. 

The fields are as follows: 

 Stimulation Program 
Options: P1, P2, P3, P4, No Change 

 Stimulation Control 
Options: ON (with flags), OFF, No Change 

 INC/DEC Flags 
             Options: Set INC flag, Set DEC flag, No Change 
 

Whenever the algorithm first enters a state, the list of 
entry actions is executed.  The Stimulation Program field 
allows the stimulation program to be optionally switched to 
any of the four available programs (P1-P4) or left as it was. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  General-purpose control policy state framework dialog 
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The Stimulation Control field allows stimulation to be 
either turned ON, turned OFF, or remain unchanged. 
Whenever stimulation is turned ON with an unchanged 
stimulation program, the Increment/Decrement flags are 
checked and the amplitude is adjusted accordingly.  The 
flags are then cleared.     

The INC/DEC Flags entry action field enables the 
stimulation amplitude to be incremented (INC) or 
decremented (DEC).  If stimulation is already ON, the 
adjustment will be made immediately.  If not, a global flag 
is set (either INC or DEC) indicating that the next time 
stimulation is turned ON without a change of program in a 
future state, the stimulation amplitude will be adjusted 
accordingly (incremented or decremented). The new 
amplitude is relative to the previous “ON” value. 

An expiring timer is one condition that causes a state 
transition.  If the user enters a timer value in the Timer 
field, the timer is activated and will cause an exit from the 
state upon its expiration.  The Next State field dictates to 
which state the algorithm will transition. The classifiers are 
updated and queried at a default rate of 200 ms, so this is 
used as the “tick rate” of the timer.  In the GUI, times are 
represented in seconds.  If no timer value is entered, the 
timer is not active and the state cannot be exited via the 
timer.    

The classifiers (CL1-CL4) can be used to initiate a state 
transition.  Up to 4 combinations of exit conditions (rows 
E1-E4) are checked in order to determine if the state should 
change.  Each row contains options for each of the 
classifiers.  These options are as follows: 

 False 

 True 

 Don’t Care (no transition) 

Whenever the state of the classifiers matches a row in the 
table, the algorithm exits the current state and transitions to 
the corresponding Next State.  All Don’t Care conditions are 
ignored and do not contribute to a state transition. 

D. Example: Building a Control Policy Algorithm 

Fig. 3 shows an example of a control policy algorithm for 
modulating hippocampal network dynamics.  This is based 
upon the embedded control policy described in [8]. 

Two classifiers are used as inputs to the control policy 
algorithm.  One is an “after-discharge” detector (AD Det), 
which monitors for seizure-like activity and is operational 
even in the presence of stimulation [10].  Note that this 
detector can always cause a transition, even during events 
that are timed.  This is designated as CL1 (Classifier 1) in 
Fig. 4 and Table 1.  The second classifier is a suppression 
detector (abbreviated as “suppr” in Fig. 3) that monitors for a 
lower energy level in a selected frequency band and is 
designated CL2 (Classifier 2).  Classifiers CL3 and CL4 are 
not used in this example.  Stimulation is delivered (state 1) 
and the amplitude is adjusted according to the states of the 
two classifiers and the paths through the state machine. Fig. 
4 shows how two of the states comprising the algorithm are 
entered into the system using the dialog box.  The parameters 
entered for each state are shown in bold.    

 

 

 

 

 

 

 

 

 

 

 

Figure 3. State diagram of example control policy algorithm 

 

This algorithm initializes the system (state 0) by setting 
the stimulation program to P1 and turning the stimulator 
OFF. A 60 second timeout is set before the transition to state 
1 (Stim ON).     

When the system makes the transition to state 1 (Stim 
ON), the corresponding entry actions are taken.  The 
Stimulation Program field of the dialog box is NC, so no 
change is made to the stimulation program (which is P1).  
The Stimulation Control field is set to ON, so stimulation is 
turned ON.  A 10 second timeout is set to time the burst of 
stimulation.  If CL1 (AD Det) becomes true during the 10 
seconds, a transition is made to state 2, otherwise the 
stimulation remains ON for 10 seconds until transitioning to 
state 4.  Fig. 4(a) depicts how to add state 1 to the algorithm.           

If CL1 (AD Det) becomes true, a transition to state 2 will 
occur.  Upon entry to state 2, stimulation is turned OFF.  The 
decrement (DEC) flag is set so the next burst of stimulation 
will have a lowered amplitude.  The only way to exit state 2 
is for the AD detection to end (CL1 becomes false).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  State dialog boxes for selected states of the example control 
policy algorithm. (a) Dialog box for building state 1. (b) Dialog box for 
building state 5. 
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State 3 is used to provide at least a 90 second delay 
before there is any chance of another burst of stimulation. 
State 4 turns stimulation OFF and provides a timeout.  State 
5 checks the output of the suppression detector (CL2) and 
acts accordingly.  Fig. 4(b) depicts how to add state 5 to the 
control policy algorithm.  Each of the exit conditions E1-E3 
corresponds to a transition branch out of state 5 (Suppr 
check) in Fig. 3.  Note that the timer is inactive, so all of the 
transitions are dependent upon the classifiers CL1 and CL2.  

State 6 sets the INC flag.  This will cause an increase in 
amplitude during the next state with an ON command.  State 
6 has an immediate transition to state 1.   

State 7 is where this algorithm differs from that of [8].  A 
DEC flag has been inserted to allow the system to maintain 
equilibrium.  It is possible for the amplitude to be lowered 
without detection of an after-discharge, which could be 
considered an undesirable side effect. State 7 waits for 
suppression to end before a transition to state 1, which will 
turn on stimulation.          

Table 1 depicts how the example control policy 
algorithm is stored in internal memory.  In state 6, “IT” 
stands for “immediate transition.”  The “suppr” loop 
depicted in Fig. 3 for state 7 is implicit because no entry is 
necessary for the system to remain in the current state.   

This method provides a simple but powerful means to 
build and store a control policy algorithm.  Once the table 
has been sent to the device, the algorithm can be enabled and 
the system will run in closed-loop mode.   

 

Table 1. Internal storage of control policy algorithm as a table of states 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E. Graphical User Interface 

An interactive user interface tool has been created to 
facilitate the process of creating control policy algorithms.  
The tool contains a drag and drop state machine builder that 
allows states to be connected together.  Entry actions and 
exit conditions can be specified via dialog boxes, and the 
algorithm is run through a rule checker to ensure 
consistency.  The state machine table is automatically 
derived when the user wishes to send it to the device.  
Libraries of control policy algorithms can be developed, 
shared, and modified.  This averts the need that users be state 
machine designers. 

IV. RESULTS: CHRONIC PROTOTYPE VERIFICATION IN-VIVO 

We verified our system building on an established ovine 

protocol [11], from which we have over two years of transfer 

function data. The implanted neurostimulator was 

programmed with the algorithm of the previous section and 

run in closed-loop mode.  The hypothesis is that bursts of 

stimulation can create a lowering of the network excitability 

(suppression) and that proper modulation of stimulation can 

maintain suppression while avoiding after-discharges.   

Network excitability is measured as a 10 second average of 

the beta channel, which measures the relative energy in a 

frequency band centered at 20 Hz.  

Fig. 5 shows a segment of data collected during this 

experiment. A difference between this algorithm and the 

embedded closed-loop algorithm in [8] is the addition of the 

decrement (DEC) flag in state 7.  Another change was to 

start with low stimulation amplitude with the intention of 

avoiding the AD Det branch of the algorithm (state 2). This 

initial stimulation amplitude was also lower than that which 

could be expected to cause network suppression, so a 

number of increments were needed before suppression 

occurred. 

The paths through the state machine of Fig. 3 during the 

experiment can be tracked in Fig. 5 through the use of the 

state labels. In the case of state 5 and state 6, the time 

durations are very short (200 ms) compared to the scale of 

the figure, so these are depicted with a line next to the state 

label.  Corresponding stimulation amplitudes are also 

presented.   

At 60 seconds into the figure, the first burst of stimulation 

is delivered with an amplitude of 0.1V.  The control policy 

algorithm steps through states 4, 5, and 6 before returning to 

state 1, where it delivered the second burst of stimulation, 

this time with an amplitude of 0.2V.  This sequence of states 

repeated until the amplitude reached 0.6V, whereupon the 

suppression detector (CL2) was first triggered.  This caused 

a trip through state 7, where it waited until the end of 

suppression detection.    

The algorithm was able to zero in on a region of 

stimulation amplitudes and maintain the desired network 

suppression without causing AD’s, thereby demonstrating in 

a prototype the desired automaticity for parameter selection 

and the utility of the flexible control policy framework. 
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Figure 5. Segment of data collected during execution of a closed-loop control policy algorithm showing servo control in an ovine model 

V. DISCUSSION 

Attempting to enhance therapies with closed loop control 
is a logical step in the evolution of DBS.  Given the need for 
enabling investigators to explore this space from first 
principles, and with the remaining questions to be resolved 
around mechanisms of action, we believe providing a 
flexible framework for building control policy algorithms is 
a key requirement of achieving this goal.  

The generic control policy framework demonstrated in 
this prototype provides a flexible method of building, 
exploring, and refining control policy algorithms that are 
compatible with the architecture of the implantable 
neurostimulator.  A library of such algorithms can be built by 
researchers and/or the engineering team.  The flexibility of 
exploring new paradigms of neuromodulation can be 
achieved without the burden of a firmware update for each 
algorithm, an important constraint for clinical translation. 

The next step for this research system is to translate the 
methodologies to preclinical models of disease, with the goal 
to develop and verify algorithms for optimal stimulator 
control in chronic studies that represent the intended use 
cases for neuromodulation.       
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