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Abstract

From a point view of nonlinear dynamics, the elec-

trical activity of the heart is a complex dynamical system,

whose dynamics reflects the actual state of health of the

heart. Nonlinear signal-processing methods are needed

in order to accurately characterize these signals and im-

prove understanding of cardiac arrhythmias. Recent de-

velopments on reconstructible signals and multiscale in-

formation content show that an analysis in terms of sin-

gularity exponents provides compact and meaningful de-

scriptors of the structure and dynamics of the system.

Such approach gives a compact representation atrial ar-

rhythmic dynamics, which can sharply highlight regime

transitions and arrhythmogenic areas.

1. Introduction

The electrical activity of the human heart is a com-

plex system. The heart rhythm is formed through com-

plex synchronization processes between pacemaker cells

and so it shows chaotic rate fluctuations. Compared to

the average interbeat intervals, these fluctuations are sig-

nificantly smaller, so the sinus rhythm appears as mainly

periodic, but fluctuations around this main period fol-

low structured nontrivial dynamics. In fact, it has been

reported that interbeat fluctuations have a multifractal

scale-invariant structure [1, 2, 3]. The resulting signal

reflects the network topology generating it, for which the

methods of analysis of dynamic structure are especially

suitable. In particular, an analysis based on the singu-

larity exponents and the optimal wavelet allows a direct

access to the geometric characteristics of the multiscale

behavior. This methodology is known to give more ac-

curate estimation of the tails of the singularity spectrum

and is generally more robust on empirical data. Having

accurate estimates is of paramount importance to antici-

pate as much as possible when the heartbeat starts to drift

from the healthy behavior [4, 5].

Altering the electrical activity can restore the heart

to a healthy sinus rhythm. For example, in case of parox-

ysmal AF, Haı̈ssaguerre et al. have shown [6] that for

80 % of patients, electrical insulation of the pulmonary

veins allows the patient to regain a normal heart rhythm

[7, 8, 9, 10, 11, 12, 13]. But in persistent or permanent

AF, the location of pathogen areas remains difficult and

is still an open problem. So, the characterization of these

signals is of vital importance to detect signs of transition

to an arrhythmia and to understand the arrhythmia mech-

anisms, which are at the theoretical foundations of the

therapies by electrical insulation.

The paper is structured as follows: the next Sec-

tion 2 introduces the basics of our singularity analysis

method to process the cardiac electrical signals in dif-

ferent dimensions. In Section 3 we present the analysis

on atrial fibrillation data and discuss how our methods

identify dynamical changes in cardiac rhythm. Finally,

in Section 4 we draw the conclusions of our work.

2. Singularity analysis method

The method of singularity analysis comes from

the Microcanonical Multiscale Formalism (MMF) [14]

which is a theoretical and methodological framework for

the analysis of multiscale signals. These singularity ex-

ponents describe the local regular / singular behavior of

the signal around each point, i.e. how rare or unrecon-

structible is the value at that point from the rest of the

signal. A reconstruction kernel that is deterministic, lin-

ear, isotropic and translational invariant is uniquely de-

fined and its form implies locally evaluated singulari-

ties and thus no need to assume any kind of stationarity

[14, 15, 16]. Given a signal s(x), its singularity exponent

h(x) can be determined, when the following condition is

fulfilled :

TΨµ(x,r) = αΨ(x) rh(x) + o
(

rh(x)
)

(r→ 0) (1)
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where TΨµ(x,r) =
∫

Rd dµ(x′)Ψ((x−x′)/r) is the

wavelet projection of the measure µ at point x (spa-

tial or temporal) and scale r, dµ(x) = ‖∇s‖(x) dx is

the gradient-modulus measure and Ψ is a certain kernel

known as mother wavelet.

The orientation of singularities defines a fast and

simple dynamics which, for the case of heartbeat, is sta-

tistically compatible with a stochastic process without

memory [17, 5]. The key manifold of the signal driving

its dynamics is called the oriented most-singular compo-

nent. So, reconstructing the signal by a reconstruction

kernel [14] only from that oriented manifold results in

a reduced signal, which follows the same behavior (1)

with the same exponents but different prefactor α(x) and

secondary terms. The modulation factor linking the orig-

inal with the reduced signal defines a complex but slow

dynamics called source field (SF):

µs(A ) =
∫

A

dµr(~x, t) SF(~x, t) (2)

where r refers to the reduced signal. This allows defin-

ing the SF as the Radon-Nikodym derivative between the

measure on the signal and that on the reduced signal [4],

SF(~x, t) =
dµs

dµr

(~x, t). (3)

3. Results on ECG, endocavitary catheter

measures and electric potential maps

First we check the validity of the formalism pro-

posed in the previous section and apply it to different

types of signal describing the electrical activity of the hu-

man heart. Namely, 1D time series of electric potential

as measured by electrodes in catheters inside the heart,

measured on the body surface (ECG), and 2D+ t maps

from non-invasive body surface measurements projected

on an epicardial mesh. The formalism adapts to numeri-

cal methods for each case.

Data All the processed signals correspond either to

healthy sinus rhythm or to cases of atrial arrhythmias,

namely atrial flutter and atrial fibrillation. Time series:

we have processed electric potential measures (unipolar

and bipolar) recorded during radiofrequency ablation op-

erations at Haut-Leveque hospital. They include 4 chan-

nels for electrocardiogram measurements on the skin and

17 channels from electrodes in catheters used for the

ablation procedure. Recordings include sinus rhythm

and atrial fibrillation [18]. We have also processed sig-

nals #201 and #217 of MIT-BIH Arrhythmia Database

[19, 20]. Electrocardiographic maps: Body surface

measurements by electrodes all around the thorax. A

scan of the heart geometry and relative position to the

electrodes is used to project an inverse mapping of the

electric potential on the epicardium [21, 22, 23]. Data

come from two patients, the one under atrial flutter and

the other under atrial fibrillation [4, 5].

Potential time series analysis In the time domain, SF

varies infrequently and exhibits sharp transitions, Fig. 1.

AF presents a distinctive dynamical character from sinus

rhythm. Transitions concentrate in points where recon-

struction deviates more, meaning that information con-

centrates on these points and SF transitions correspond

to actual changes in the dynamical properties of the sig-

nal [5].

-10000

-8000

-6000

-4000

-2000

 0

 2000

 4000

 0  1000  2000  3000  4000  5000
-10000

-8000

-6000

-4000

-2000

 0

 2000

 4000

 6000

 0  1000  2000  3000  4000  5000

Figure 1. V1 lead under AF. Left: SF (solid)
vs. original (dashed). Right: reconstruction

(dashed) vs. original (solid). Reconstruction ex-
cels, as we capture most of the dynamics.

Source field on potential maps Fig. 2 shows the SF

on a complex AF case with multiple problematic areas.

Extreme SF values sharply highlight the arrhythmogenic

areas whose ablation stopped the fibrillation. Small SF

values correspond to less fluctuation modulation and so

a more prominent role of the fast dynamics, just the op-

posite behavior to the case of a simpler flutter reentry [5].

Figure 2. Average SF maps on atria under AF

(valves in black), it sharply highlights key fibril-
lation areas: pulmonary veins and the left pos-
terior inferior area, whose ablation stopped AF.

Dynamical attractor A different approach that

nonetheless also provides accurate complexity measures

in cardiodynamics is the dynamic phase-space recon-

struction implied by the embedding theorem [24, 25].

6143



The principle of this approach relate the properties

of a time series with the topological properties of an

object embedded in a space where all the states of

the dynamics are uniquely represented. Since that

constructed space is topologically equivalent to the mD

phase space of the dynamics in abstract coordinates,

we can construct it with m independent observations.

A simple way to achieve this consists of finding a time

lag for which observations do not mutually influence,

but to discriminate changes of regime we take lags

only at the local neighborhood of each point. At each

point, the embedding dimension m is the least one

that embeds the dynamics (which is twice plus one

the Minkowski dimension of its attractor set) and the

time lag τ is the minimum for which the m coordinates

are independent. As with singularity analysis, these

methods are robust and well adapted to discretized,

real-world signals, they render compact descriptions of

their dynamics, and they characterize complexity degree

and information distribution [26, 27]. Case #217 of

MIT-BIH Arrhythmia Database displays a fragmented

electrogram with many intermittent episodes of atrial

flutter and atrial fibrillation. Embedding dimensions do

not evolve significantly, but time lags reveal a strong

correlation of their fluctuations with the arrhythmic

episodes, Fig. 3 [28].
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Figure 3. Time lags (in samples, at 360Hz)
of phase-space reconstruction for MIT-BIH Ar-
rhythmia Database case #217.

4. Discussion and conclusions

Multiscale nonlinear analysis provides appropriate

tools to characterize cardiac dynamics. This is the case

both for electric potential time series (body surface and

endocavitary) as well as for electrocardiographic images

mapped on the surface of the heart. In this paper, we

have presented how this type of signal analysis can be ex-

ploited to provide meaningful complexity measures with

minimal assumptions on the underlying dynamics.

To that extent, independently of the signal type, sin-

gularity analysis allows a canonical decoupling of a com-

plexly structured slow dynamics from a transitional fast

dynamics that is modulated by the former. The fast dy-

namics reduces to a three-state Markov process whose

eigenvalues indicate atrial arrhythmic regimes. The slow

dynamics is stochastically more complex and it describes

a Radon-Nikodym derivative of the actual signal from

what can be inferred by the fast dynamics alone. The

slow dynamics has small fluctuations and abrupt changes

that indicate dynamical transitions in time and space,

highlighting arrhythmogenic areas.

The robustness of the approach can be corroborated

by comparing it with an independent analysis method. In

that sense, we have performed phase-space reconstruc-

tions of the chaotic signals by means of the embedding

theorem. We observe a correspondence of time lag fluc-

tuations of such reconstructions with atrial fibrillation

episodes in the same way as with the dynamical changes

coming from singularity exponents. These results open

the way for improved model-independent complexity de-

scriptors to be used as non-invasive diagnosis support or

operation guide in cases of cardiac arrhythmias, particu-

larly atrial fibrillation.
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