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Abstract— Heart rhythm is extrinsically modulated by the 

autonomic nervous system and recently, the Tone-Entropy (T-

E) measurement was reported as a measure of autonomic 

balance and activity in time domain HRV analysis. Current 

algorithm for T-E measurement describes only beat-to-beat or 

influence of a heart beat on a train of succeeding beats on a 

single scale. Therefore, conventional T-E analysis has often not 

been able to discern various physiological conditions using 

heart rate variability (HRV) signal. In this study, we will 

present a mathematical framework to define multi-scale T-E 

analysis, apply this in differentiating physiological and 

synthetic RR time series. Finally, we compare the performance 

of proposed parameters with conventional T-E measurements. 

I. INTRODUCTION 

The RR interval (interbeat) time series is used for 
studying heart rate variability (HRV), which is a popular and 
noninvasive tool to study cardiac autonomic activity [1-3]. 
The heart rate changes over time with no linear relationship 
between HR and time. Thus, the underlying mechanism 
involved in human heart rate control has been reported to be 
complex and nonlinear [4]. Therefore, analysis of the 
dynamic behavior of RR interval time series has opened up a 
new approach towards the assessment of normal and 
pathological cardiovascular behavior.   

The conventional Tone-Entropy (T-E) method of 
quantifying heart rate variability (HRV) uses single-scale 
based successive R-R intervals. The physiological 
interpretations of single-scale T-E in various experimental 
settings were previously reported [5, 6]. Lower Tone values 
(negative) indicate that vagal activity predominates in the 
sympatho-vagal balance in a healthy population at rest. On 
the other hand, Entropy represents the total sympatho-vagal 
activity which means that entropy increases with increasing 
sympatho-vagal activity and vice versa [6-8]. The lagged T-E 
method was reported by Karmakar et. al. and the authors 
have used multi-lag T-E method to identify increased risk of 
post-infarct people with diabetes [9]. In previous studies, 
Khandoker et. al. [5] and Karmakar et. al. [10]  reported the 
use of conventional and multi-lag T-E method in classifying 
cardiac autonomic neuropathy and monitoring severity of 
cardiovascular autonomic neuropathy (CAN) in diabetic 
subjects . 
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Conventional and lagged T-E measurement both uses 
single scale RR time series to assess cardiac autonomic 
system. However, no study has reported the use of T-E in 
multiple scale, despite that fact that biological systems are 
complex and operate across multiple spatial and temporal 
scales [11]. Multi-scale entropy analysis of HRV signal was 
first proposed by Costa et. al. which have been used in a wide 
range of physiological conditions [11-13]. Motivated by 
multi-scale properties of cardiac autonomic system, in this 
study we first developed the multi-scale T-E measurement 
technique and then applied this approach to differentiate 
physiological (real) and synthetic RR interval data. We also 
compared to performance of multi-scale T-E analysis with 
conventional T-E measurement to prove that multi-scale T-E 
provides additional information about the underlying system 
than conventional T-E measurement. 

II. DATA AND METHODS 

A.  Data 

We used 50 RR interval series obtained from the 
PhysioNet/CinC Challenge 2002 dataset [14]. Each series 
was extracted from a 20–24h electrocardiogram (ECG) signal 
(approx. 70,000–130,000 points). 26 of these signal was 
derived from ambulatory ECG recordings of people aged 
from 20 to 50 years who had no known cardiac abnormality 
and  22 consisted of synthetic data that had been generated to 
emulate healthy RR intervals using 11 different models, and 
the remaining two were time-reversed physiological series 
[15]. In this study, the last two time-reversed series were 
reverted to real physiological signal. Hence, there were 28 
real physiological (real) and 22 synthetic series used for the 
study. In this study, we used a segment of 40000 consecutive 
RR intervals from the beginning for all subjects.  

B. Multi-scale T-E analysis of HRV signal 

In this study, we have used the scaling approach proposed 
by Costa et. al. [11]. In brief, for a given time series 
{            } the coarse-grained time series at scale   is 
constructed by averaging   number of data points in non-
overlapping windows.  -th element of the coarse-gained time 
series at scale   is calculated using eq. (1). 
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A RR interval or period is defined as the time difference 
between two consecutive R peaks of the electrocardiogram 
(ECG) signal. Let the RR intervals time series RR be defined 
as: 

    {             } 
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where, N is the number RR intervals. Heart rate 
acceleration and inhibition can be determined from the 
difference of consecutive RR intervals. If       become 
shorter than     then it is an acceleration of heart rate. 
Therefore, acceleration of the heart is expressed as a plus 
difference and inhibition as a minus difference of RR 
intervals. However, to reduce the impact of heart rate 
variation over a wide range of time and different subjects, 
normalized variation in RR interval is preferred to monitor 
the variability. In conventional T-E analysis, percentile 
change of the successive RR intervals with respect to the first 
RR interval is expressed as the percentage index (PI) and 
defined as: 

 
  ( )  

         
   

     (2)  

The Tone is defined as a first order moment (arithmetic 
average) of this PI time series as:   
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Tone is the balance between accelerations (PI > 0) and 
inhibitions (PI< 0) of the heart rate and represents the 
sympatho-vagal balance faithfully as shown in previous 
studies [6, 16]. Entropy is defined from the probability 
distribution of PI by using Shannon’s formula [17]:   

 
         ∑ ( )     ( )
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where,  ( ) is a probability of PI having values in the 
range             , where   is an integer. The entropy 
evaluates total acceleration–inhibition activities, or total heart 
period variations, in a familiar unit of bit. 

For multi-scale T-E analysis, we have introduced the 
scale   in equation (2), used to derive the PI time series from 
the RR time series signal. Hence, in the multi-scale T-E 
analysis PI is expressed as the percentile change of the  -th 
and    -th RR inverval at scale   and is defined as:  
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      (5)  

where,   is an integer and     represents the 
conventional T-E analysis. The detailed methodology of 
conventional T-E analysis has been described in previous 
reports [6, 16]. 

 

B. Classification of groups 

In this study, we used the Quadratic Discriminant (QD) 
classifier rather than the more traditional linear classifier to 
test the ability of Tone and Entropy values individually and 
together over multiple scales to differentiate real RR time 
series from synthetic. The classification at any scale   
represents the classification is performed using corresponding 
parameter (Tone, Entropy or both together) at that scale only. 
On the other hand, the scale limit   for any parameter (Tone, 
Entropy or both together) represents all parameters upto scale 
 . For example,     for      indicates that classification 

is performed using all      parameters from scale 1 to 5. A 
leave-one-out cross-validation scheme was adopted to 
evaluate the generalization ability of the classifiers. Cross-
validation procedures have been used in a number of 
classification evaluations, particularly for limited data sets 
[18]. In this scheme the data set was uniformly divided into 
50 subsets with one used for testing (unknown to classify) 
and the remaining 49 records used to train the classifiers. 
This was repeated for the remaining subsets so that all 
subsets were used as the testing sample. 

The following three measures of accuracy, sensitivity and 
specificity were used to assess the performance of the 
classifiers [19, 20]: 

 

Where, TP is the number of true positives, i.e., the 
classifier identifies a RR interval time series that was labeled 
as synthetic; TN is the number of true negatives, i.e., the 
classifier identifies a RR interval time series that was labeled 
as real; FP is false synthetic identifications; and FN is false 
real identifications. Accuracy indicates overall detection 
accuracy, sensitivity is defined as the ability of the classifier 
to accurately recognize a synthetic RR time series whereas 
specificity indicates the classifier's ability not to generate a 
false negative. 

C. Statistics 

The non-parametric Mann-Whitney U-test was performed 
to allow for pairwise testing for significant differences of 
HRV parameters between the two groups.  Since, the number 
of subjects are small and their distribution is not normal non-
parametric test is more appropriate than parametric test. 

III. RESULTS & DISCUSSION 

Mean ± SD (standard deviation)      and         
values for both real and synthetic RR interval time series are 
given in Table 1. Mean      value is lower for synthetic RR 
time series at scale      , however it is higher for the 
other scales. The reason behind lower mean      value at 
scale     due to the very low      value of two synthetic 
RR time series that is clearly visible in Figure 1 (Scale 1). 
Even with such exception, there is an opposite trend in mean 
     value for real and synthetic RR time series. With 
increasing scale mean      decreases for real RR time series 
whereas, it increases for synthetic RR time series. Since 
     represents the sympatho-vagal balance [5, 21], this 
results indicates that the sympatho-vagal balance of synthetic 
RR time series tends to symmetricity (      ) with 
increasing scale. Therefore, the higher asymmetricity (lower 
sympatho-vagal balance) of synthetic RR time series at lower 
scales may be due randomness rather than complexity of 
underlying structures. This supports the findings reported by 
Khandoker et al. [5], in which author found higher Tone 
(lower sympatho-vagal balance) values for subjects with 
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definite cardiac autonomic neuropathy (CAN). The      
values are significantly different among two groups at scale 
     , which supports the need for multi-scale study over 
conventional single scale study [11].    

TABLE I.  MEAN ± SD VALUES OF TONE AND ENTROPY PARAMETERS 

OF REAL AND SYNTHETIC RR TIME SERIES FOR SCALE M=1~8.  

Parameter 
Scale 

m 

Real 

(Mean ± SD) 

Synthetic 

(Mean ± SD) 

Tone 1 -0.12 ± 0.10 -0.47 ± 1.16 

 
2 -0.14 ± 0.08 -0.17 ± 0.20 

 
3 -0.16 ± 0.10 -0.15 ± 0.19 

 
4 -0.18 ± 0.11 -0.13 ± 0.15* 

 
5 -0.19 ± 0.10 -0.12 ± 0.11** 

 
6 -0.19 ± 0.10 -0.11 ± 0.09** 

 
7 -0.19 ± 0.09 -0.10 ± 0.08** 

 
8 -0.18 ± 0.09 -0.10 ± 0.09* 

Entropy 1 3.91 ± 0.57 3.95 ± 0.84 

 
2 4.21 ± 0.42 4.00 ± 0.87 

 
3 4.31 ± 0.42 3.87 ± 0.96 

 
4 4.40 ± 0.41 3.85 ± 0.92* 

 
5 4.45 ± 0.38 3.83 ± 0.86* 

 
6 4.48 ± 0.35 3.82 ± 0.82* 

 
7 4.48 ± 0.33 3.78 ± 0.80** 

 

8 4.48 ± 0.31 3.79 ± 0.80** 

* p<0.05; ** p<0.01 

The         of a RR time series represents the overall 
sympathetic-parasympathetic activity. Therefore, higher 
        values indicate increase in total activity and lower 
values indicate decline. Although         is a measure of 
complexity it is related to the degree of randomness as well 
[11], therefore the higher mean         value of synthetic 
RR time series at scale     than real RR time series found 
in this study (Table 1) may be because of randomness rather 
than underlying system complexity. This is also supported by 
the findings that with increasing scale the mean         
values decline for synthetic RR time series, whereas the 
opposite/no trend is found for real RR time series. This 
indicates that the         value of real RR time series is 
due to complexity of underlying structure rather than 
randomness. Similar to      values, the         values are 
also significantly different among two groups at scales 
      rather than at scale    . Therefore, both      
and         value supports the necessity of multi-scale 
analysis to differentiate between real and synthetic RR time 
series signal.   

The              (   ) space of RR time series is 
a visual representation of regulation or dysregulation of RR 
interval time series. Higher      and lower         are 
indicative of autonomic nervous system dysregulation and 
vice versa. In a previous study, Khandoker et. al. have 
reported that the lower      and higher         in healthy 
subjects in supine resting condition compared to 
parasympathetic perturbed conditions (atropine infusion and 
70

0
 head-up tilt) [5]. In this study we have found similar 

findings where the real RR time series have lower mean 
     and higher mean         values than synthetic RR 
time series. However, at lower scale       the     
spaces of two groups are highly overlapping, which reduces 
with increasing scales (Figure 1). The important finding in 
this study is that at higher scales     the     space has 
shown better difference among two groups (real and synthetic 
RR time series) than at scale    . 

 

Figure 1.  Evaluated Tone and Entropy in T-E space, ensemble averages by 
open rectangles (mean ± SD) and indivduals, by symbols. Dotted red 

rectangles are for synthetic RR time series and solid black rectangles 
represent real RR time series.  

The sensitivity, specificity and accuracy of individual 
     and         as well as both parameters together using 
QD classifier at individual scale       and scale limit k 
(ranging from 1 to  ) are shown in Figure 2. At individual 
scale      has shown lowest accuracy at all scale, except 
m=3, compared to         and both parameters together. 
    together has shown highest accuracy at all scale except 
   , where Entropy has shown the maximum accuracy. 
Finally, the highest accuracy in individual scale analysis was 
found 84% using      and         at scale    . 
Therefore, we can conclude that     together has 
performed better to classify real and synthetic RR time series 
than individual      or         parameter. 

For scale limit  , again      has shown lowest accuracy 
at all limits      .     together has shown maximum 
accuracy at all limits except   {     }. However, the 
highest accuracy 96% was found for both         and 
    parameters at scale limit    . Therefore, we can 
conclude that         and     parameters over a scale 
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limit perform best in classifying real and synthetic RR time 
series. This findings support the findings reported by Costa 
et. al. in which the authors have used the pattern over 
multiple scale to differentiate real and synthetic RR time 
series [12]. However, the authors have used a qualitative or 
manual approach in differentiating both groups rather than 
automatic classification. From the results of this study, we 
can conclude that real and synthetic RR time series can be 
better differentiated using multi-scale     analysis than 
conventional single scale     analysis.  

 

Figure 2.  Sensitivity, Specificity and Accuracy of individual Tone and 

Entropy as well as both parameters together using QD classifier at 
individual scale m=1~8 and scale limit k (ranging from 1 to k) 

IV. CONCLUSION 

In this paper, we studied the benefit of using multi-scale 

             analysis to differentiate between real and 

synthetic RR time series. The results of the investigation 

indicate the multi-scale     analysis provides additional 

information to conventional analysis. The conventional 

single scale T-E could not differentiate between real and 

synthetic RR time series, whereas multi-scale T-E has shown 

96% accuracy in differentiating the two groups. In future, it 

will be interesting to see how multi-scale T-E performs in 

discriminating various pathological conditions.  

ACKNOWLEDGMENT 

This study was partly funded by the University of 

Melbourne Early Career Researcher Grant. 

REFERENCES 

[1] H. V. Huikuri, T. H. Mäkikallio, K. E. Airaksinen, T. Seppanen, P. 

Puukka, I. J. Raiha, and L. B. Sourander, “Power-law relationship of 

heart rate variability as a predictor of mortality in the elderly,” 

Circulation, vol. 97, pp. 2031-2036, 1998. 

[2] M. Brennan, M. Palaniswami, and P. Kamen, “Do existing measures 
of Poincare plot geometry reflect nonlinear features of heart rate 

variability?” IEEE Trans. Biomed. Eng., vol. 48, no. 11, pp. 1342-

1347, 2001. 
[3] M. Brennan, M. Palaniswami, and P. Kamen, “Distortion Properties of 

the Interval Spectrum of IPFM Generated Heartbeats for Heart Rate 

Variability Analysis,” IEEE Trans. Biomed. Eng., vol. 48, no. 11, pp. 
1251- 1264, November 2001. 

[4] P. C. Ivanov and M. G. Rosenblum, “Scaling behaviour of heartbeat 

intervals obtained by wavelet-based time-series analysis,” Nature, vol. 
383, pp. 323 – 32, 1966. 

[5] A. H. Khandoker, H. Jelinek, T. Moritani and M. Palaniswami, 

“Association of cardiac autonomic neuropathy with alteration of 
sympatho-vagal balance through heart rate variability analysis,”  

Medical Engineering & Physics, vol. 32, pp. 161-167, 2010. 

[6] E. Oida, T. Moritani and Y. Yamori, “Tone–entropy analysis on 
cardiac recovery after dynamic exercise,” J Appl Physiol, vol. 82, pp. 

1794–1801, 1997. 

[7] M. Bootsma, C. A. Swenne, H. H. Van Bolhuis, P. C. Chang, V. M. 
Cats and A. V. Bruschke, “Heart rate and heart rate variability as 

indexes of sympathovagal balance,” Am J Physiol,  vol. 266, pp. 

H1565–H1571, 1994. 
[8] M. P. Tulppo, R. L. Hughson, T. H. Makikallio, K. E. Airaksinen, T. 

Seppanen and H. V.  Huikuri, “Effects of exercise and passive head-

up tilt on fractal and complexity properties of heart rate dynamics,” 
Am J Physiol Heart Circ Physiol, vol. 280, pp. H1081–H1087, 2001. 

[9] C. Karmakar, H. Jelinek, A. Khandoker, M. Tulppo, T. Makikallio, A. 

Kiviniemi, H. Huikuri and M. Palaniswami, "Identifying increased 
risk of post-infarct people with diabetes using multi-lag Tone-Entropy 

analysis," Engineering in Medicine and Biology Society (EMBC), 

2012 Annual International Conference of the IEEE ,  pp. 25-28, 2012. 
[10] C. K. Karmakar, A. H. Khandoker, H. F. Jelinek and M Palaniswami, 

“Risk stratification of cardiac autonomic neuropathy based on multi-

lag Tone-Entropy”, Medical & Biological Engineering & Computing, 
Accepted on December 18, 2012. 

[11] M. Costa, A. L. Goldberge and C. K. Peng,.”Multiscale entropy 

analysis of complex physiologic time series,” Phys Rev Lett , vol. 
89:068102, 2002. 

[12] M. Costa M, A. L. Goldberger AL and Peng CK, “Multiscale entropy 

to distinguish physiologic and synthetic RR time series”, Comput 
Cardiol, vol. 29, pp. 137-140, 2002. 

[13] P. R. Norris,  S. M. Anderson, J. M. Jenkins,  A. E. Williams and J. A.  

Morris Jr, “Heart rate multiscale entropy at three hours predicts 
hospital mortality in 3,154 trauma patients,”, Shock, vol. 30, pp. 17–

22, 2008. 

[14] Physionet, http://www.physionet.org/challenge/2002/dataset/. 
[15] G. B. Moody, “ RR interval time series modeling: the 

PhysioNet/Computers in Cardiology challenge 2002,” Comp Cardiol, 
vol. 29, pp. 125–128, 2002. 

[16] M. Amano, E. Oida and T.  Moritani, “Age-associated alteration of 

sympatho-vagal balance in a female population assessed through the 
tone–entropy analysis,” Eur J Appl Physiol, vol. 94, pp. 602–610, 

2005. 

[17] C. E. Shannon, “A mathematical theory of communication,” Bell Syst 

Tech J, vol. 27, pp.379–423, 1948. 

[18] B. D. Ripley, “ Pattern Recognition and Neural Networks,” 

Cambridge Univ Press, Cambridge, UK, 1996. 
[19] K. Chan, T. W.  Lee, P. A. Sample, M. H. Goldbaum, R. N. Weinreb 

and T. J. Sejnowski, “Comparison of machine learning and traditional 

classifiers in glaucoma diagnosis,” IEEE Trans Biomed Eng, vol.  49, 
pp. 963–974, 2002. 

[20] C. C. C. Pang, A. R. M. Upton, G. Shine and M. V.  Kamath, “A 

comparison of algorithms for detection of spikes in the 
electroencephalogram,” IEEE Trans Biomed Eng, vol. 50, pp. 521–

526, 2003. 

[21] E. Oida, T. Kannagi, T. Moritani and Y. Yamori, “Aging alteration of 
cardiac vagosympathetic balance assessed through the tone–entropy 

analysis,” J Gerontol, vol. 54A, pp. M219–M224, 1999. 

0 2 4 6 8
40

50

60

70

80

90

100

Scale m

S
e
n
s
it
iv

it
y

 

 

0 2 4 6 8
0

20

40

60

80

100

S
p
e
c
if
ic

it
y

Scale m

0 2 4 6 8
40

50

60

70

80

90

100

A
c
c
u
ra

c
y

Scale m

0 2 4 6 8
40

50

60

70

80

90

100

Scale limit k

S
e
n
s
it
iv

it
y

 

 

Tone

Entropy

T-E

0 2 4 6 8
0

20

40

60

80

100

S
p
e
c
if
ic

it
y

Scale limit k

0 2 4 6 8
40

50

60

70

80

90

100

A
c
c
u
ra

c
y

Scale limit k

6138


	MAIN MENU
	Help
	Search
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

