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Abstract— We report an exemplary study of instantaneous
assessment of cardiovascular dynamics performed using point-
process nonlinear models based on Laguerre expansion of the
linear and nonlinear Wiener-Volterra kernels. As quantifiers,
instantaneous measures such as high order spectral features
and Lyapunov exponents can be estimated from a quadratic
and cubic autoregressive formulation of the model first order
moment, respectively. Here, these measures are evaluated on
heartbeat series coming from 16 healthy subjects and 14
patients with Congestive Hearth Failure (CHF). Data were
gathered from the on-line repository PhysioBank, which has
been taken as landmark for testing nonlinear indices. Results
show that the proposed nonlinear Laguerre-Volterra point-
process methods are able to track the nonlinear and complex
cardiovascular dynamics, distinguishing significantly between
CHF and healthy heartbeat series.

I. INTRODUCTION

High Order Spectra (HOS) and Lyapunov Exponents
(LEs) are widely recognized as important quantifiers of,
respectively, nonlinearity and complexity. HOS are spectral
representations of higher order statistics, i.e. moments and
cumulants of third order and beyond [1]. HOS can detect
deviations from linearity, stationarity or Gaussianity in the
signal. A particular case is represented by the third-order
spectrum, also called bispectrum, which is by definition the
Fourier transform of the third-order cumulant sequence. LEs
are nonlinear measures useful for the characterization of
complexity in a nonlinear system. In such a case, complex
dynamics refer to the possible chaotic behavior of the system
variables. In a stable purely deterministic nonlinear system,
for instance, positive LEs reflect a strong dependence to
initial conditions leading to the definition of chaotic system.

Both HOS and LEs have been successfully estimated on
time series coming from physiological systems, in which
nonlinear behavior plays a crucial role [2]. In particular,
these concepts have been applied on the series mostly used
for autonomic and cardiovascular assessment, i.e., heart rate
variability (HRV) [2]. HRV is the analysis of the variability
of the RR series, the distance between two heartbeat events
identified as R-waves extracted from the electrocardiogram.
HOS and LEs estimation on HRV is not a trivial task. Most
of the proposed methods, in fact, require interpolation of
unevenly-spaced samples, introducing algorithmic artifacts.
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Moreover, to obtain reliable estimations, relatively long-time
observations are needed.

To overcome these issues, a point process-based approach
on heartbeat series has been recently proposed [3]–[5] al-
lowing for instantaneous cardiovascular and autonomic as-
sessment without any interpolation requirement. The point-
process model’s effectiveness has been validated against
other methods, both for linear [3] and nonlinear [6] formula-
tions. This stochastic approach defines the probability of hav-
ing a heartbeat event at each moment in time. Accordingly,
each RR interval is characterized by an inverse-gaussian (IG)
distribution whose first order moment is defined with a fully
parametric and autoregressive formulation. Alongside the
simple autoregressive linear combination of the present and
past RR intervals, Nonlinear Autoregressive (NAR) terms
can also be taken into account in the formulation of the
IG mean. Specifically, previous works linked the instanta-
neous HOS estimations to second-order nonlinearities [4] and
instantaneous LEs to third-order nonlinearities [5] defining
the so-called instantaneous dominant Lyapunov exponent
(IDLE). Due to the intrinsic long-term memory of the
cardiovascular system and the high order of nonlinearities, a
large number of parameters needs to be estimated. Therefore,
the linear and nonlinear autoregressive kernels, formulated
as Wiener-Volterra series, are expanded using the discrete-
time Laguerre bases [7], devising the quadratic and cubic
nonlinear autoregressive Laguerre models (hereinafter 2nd

NARL and 3rd NARL, respectively).
In this work we report both NAR and NARL applications

considering HOS and IDLE of heartbeat series gathered from
healthy subjects and patients with Congestive Heart Failure
(CHF). Such series belong to the well-known online database
physiobank [8]. The primary goal is to study the role of the
mentioned instantaneously derived features in discriminating
the control and CHF groups with statistical significance. The
assessment of HRV chaotic behavior is not addressed here. It
has been demonstrated, in fact, that LEs estimations on RR
interval series are not reliable in terms of chaotic assessment,
mainly because of the presence of intrinsic stochastic terms
in the cardiovascular control dynamics [9]. Therefore, ac-
cording to current literature, claims on negative LE values are
associated with predictable and less complex cardiovascular
dynamics, whereas positive LE values indicate more complex
and unpredictable dynamics.

II. METHODS

We report essential methodological details on the models
involved in this study. Specifically, starting from the general
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point process formulation for human heartbeat (see details in
[3]), the 2nd NARL and NAR derivation (see details in [4])
is seen as further simplification of the 3rd NARL model (see
details in [5]). Then, the estimation of the IDLE, using the
3rd NARL model, and the instantaneous bispectral features,
using the 2nd NARL or NAR model, are described along.

Considering an ECG observation in the time domain,
within the interval t ∈ (0, T ], it is possible to define
RRÑ(t) as the jth R–R interval, with j = Ñ(t) the
index of the previous R-wave event before time t related
to the cardiac left-continuous counting process Ñ(t). As-
suming history dependence, a physiologically-plausible IG
distribution, f(t|Ht, ξ(t)), can be adopted to characterize
the probability distribution of the waiting time from t to
the next R-wave event [3]. Ht stands for the mathematical
representation of the past R-events, and ξ(t) represents the
vector of the model parameters including the shape parameter
of the inverse Gaussian distribution. Rather than defining the
IG mean µRR(t,Ht, ξ(t)) as direct nonlinear regression of
the previous RR intervals, the Laguerre functions [7] are
used here to expand the kernels and reduce the number of
unknown parameters that need be estimated. The generic ith-
order discrete time Laguerre function, φj(n) [7] is defined
as:

φi(n) = α
n−i
2 (1− α)

1
2

i∑
j=0

(−1)j
(
k

j

)(
i

j

)
αi−j(1− α)j

with (n ≥ 0) and α ∈ (0, 1) the discrete-time La-
guerre parameter which determines the rate of exponential
asymptotic decline of these functions. The instantaneous
µRR(t,Ht, ξ(t)) for the 3rd NARL model becomes:

µRR(t,Ht, ξ(t)) = g0(t) +

p∑
i=0

g1(i, t) li(t)+

Q∑
i=0

q∑
j=0

g2(i, j, t) li(t) lj(t)+

k∑
i=0

k∑
j=0

k∑
k=0

g3(i, j, k, t) li(t) lj(t)lk(t) (1)

where gk(...) are the regression coefficients of the model
and:

li(t) =

Ñ(t)∑
n=1

φi(n)(RRÑ(t)−n −RRÑ(t)−n−1). (2)

Straightforwardly, the 2nd NARL is obtained setting the
cubic order k = 0 in eq. 1. According to eq. 2, the nonlinear
regression in both 2nd NARL and 3rd NARL is performed on
the derivative RR series in order to improve the achievement
of stationarity within the sliding time window W = 90 sec
[4]. The NAR model corresponds to a 2nd NARL model
when α = 0.

For each of the three models, the Newton-Raphson proce-
dure is used to maximize the local log-likelihood defined in

[3] in order to estimate the unknown time-varying parameter
set ξ(t). The optimal order is estimated by means of the
Akaike Information Criterion (AIC) and of the point process
model goodness-of-fit applied to a subset of the data [3].
Such a goodness-of-fit is based on the Kolmogorov-Smirnov
(KS) test. Autocorrelation plots are also considered to test
the independence of the model-transformed intervals [3].

The quantitative tools, illustrated in the next sections, are
selectively associated to each model. Indeed, the IDLE is
exclusively extracted from the 3rd NARL model, whereas
the instantaneous bispectral features are exclusively derived
from both the 2nd NARL and NAR models. However as
preliminary step, when a NARL formulation is considered,
the Laguerre deconvolution [7] should always be used to
obtain the correspondent long-memory NAR kernel γn(...)
from the fitted coefficients gn(...) (see eq. 1).

A. Instantaneous Bispectral Features from 2nd NARL and
NAR models

Three further steps are needed to estimate the instanta-
neous spectrum and bispectrum and related features of the
considered heartbeat series.

1) from γn(...) find the extended kernels γ′n(...) [4];
2) compute the Fourier transforms Γ′n(...) of the extended

kernels γ′n(...);
3) starting from the Fourier transforms of the ex-

tended NAR kernels, Γ′1(f1) and Γ′2(f1, f2), compute
the Wiener-Volterra Input-Output kernels of order p,
Hp(f1, . . . , fn) using the following recursive relation-
ships [10]:

q∑
p=mid(q)

∑
σ∈σq

Hp(fσ(1), ..., fσ(r), ωσ(r+1)+

fσ(r+2), ..., fσ(q−1) + fσ(q))× Γ′1(fσ(1)) · · ·Γ′1(fσ(r))

× Γ′2(fσ(r+1), fσ(r+2)) · · ·Γ′2(fσ(q−1), fσ(q)) = 0
(3)

where q is a given integer representing the kernel order,
mid(q) = dq/2e, r = 2p−q and σq is the permutation
set of Nq .

Given the Γ′1(f1) term, it is possible to compute the time-
varying parametric (linear) autospectrum [4] of the original
(i.e., non-derivative) heartbeat series:

Q(f, t) = 2(1− cos(ω))Sxx(f, t)H1(f, t)H1(−f, t) (4)

where Sxx(f, t) = σ2
RR. By integrating eq. (4) in each

frequency band, the power within the very low frequency
(VLF = 0.01-0.05 Hz), low frequency (LF = 0.05-0.15 Hz),
and high frequency (HF = 0.15-0.5 Hz) ranges is computed.

Moreover, given the Γ′2(f1, f2) term, it is possible to
define the instantaneous bispectrum as reported in detail
in [4]. Since the bispectrum presents several symmetry
properties that divide the (f1, f2) plane in symmetric zones,
for a real signal the bispectrum is uniquely defined by its
values in the triangular region of computation Ω, 0 ≤ f1 ≤
f2 ≤ f1 + f2 ≤ 1. Within this region, it is possible to
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estimate several features. Specifically, the bispectral invariant
[1], P (a, t) represents the phase of the integrated bispectrum
along the radial line with the slope equal to a (with mean
P (a, t) and variance σP (a,t)). The series P (a, t) results
translation, dc-level, amplification, and scale invariant. The
parameter 0 < a ≤ 1 is the slope of the straight line on
which the bispectrum is integrated. The variables Ir(a, t) and
Ii(a, t) refer to the real and imaginary part of the integrated
bispectrum, respectively. The Mean magnitude Mmean(t) and
the phase entropy Pe(t) [1] have n = 0, 1, ..., N−1; L as the
number of points within the region Ω, Φ the phase angle of
the bispectrum, and 1(.) the indicator function which gives a
value of 1 when the phase angle Φ is within the range of bin
Ψn. The mean magnitude of the bispectrum can be useful in
discriminating between processes with similar power spectra
but different third order statistics. However, it is sensitive
to amplitude changes. The normalized bispectral entropy
(P1(t)) [1] and the normalized bispectral squared entropy
(P2(t)) [1] are also considered (between 0 and 1) along with
the sum of logarithmic amplitudes of the bispectrum [1].
As the sympatho-vagal linear effects on HRV are mainly
characterized by the LF and HF spectral powers [2], the
nonlinerar sympatho-vagal interactions can be evaluated by
integrating the bispectrum in the bidimensional combination
of frequency bands, LL(t),LH(t), and HH(t).

B. IDLE estimation from 3rd NARL model

Let us consider a generic n-dimensional linear system
in the form yi = Y (t) pi, where Y (t) is a time-varying
fundamental solution matrix with Y (0) orthogonal, and {pi}
is an orthonormal basis of Rn. The key theoretical tools for
determining the IDLE and the whole spectrum of LEs is the
continuous QR factorization of Y (t) [5]:

Y (t) = Q(t)R(t)

where Q(t) is orthogonal and R(t) is upper triangular with
positive diagonal elements Rii, 1 ≤ i ≤ n. Then, LEs are
formulated as:

λi = lim
t→∞

1

t
log ‖Y (t)pi‖

= lim
t→∞

1

t
log ‖R(t)pi‖ = lim

t→∞

1

t
log ‖Rii(t)‖ .

The cubic NAR model can be rewritten in an M -dimensional
state space canonical representation:

r(k)n =

{
r
(k+1)
n−1 if k < M

F
(
r
(M)
n−1, r

(M−1)
n−1 , · · · , r(2)n−1, r

(1)
n−1

)
if k = M

By evaluating the Jacobian J(n) over the time series, the LE
can be determined using the QR decomposition:

J(n)Q(n−1) = Q(n)R(n)

This decomposition is unique except in the case of zero
diagonal elements. Then the LEs λi are given by

λi =
1

τH

H−1∑
j=0

lnR(j)ii
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Fig. 1. Instantaneous heartbeat statistics computed from a representative
CHF patient (N. 5) and healthy subject (CNT16786) using a 3rd NARL
model. In the panels a) and c), the estimated µRR(t) are superimposed on
the recorded CHF and CNT series, respectively. The panels b) and d) show
the IDLE on the recorded CHF and CNT series, respectively. The panel e)
shows the IDLEMd − IDLEMAD bi-dimensional plane of complexity
in which the triangles represent the CHF patients and circles represent the
healthy subjects (CNT).

where H is the available number of matrices within the local
likelihood window of duration W , and τ the sampling time
step. The estimation of the LEs is performed at each time
t from the corresponding time-varying vector of parameters,
ξ(t) [5]. This provides us with a time-varying vector, λi(t),
able to track the Lyapunov spectrum in continuous time. In
this work, the first LE, λ1(t) is considered as the instanta-
neous dominant Lyapunov exponent (IDLE) and its median,
IDLEMd, and median absolute deviation, IDLEMAD, are
taken as features. These features are unique in literature and
achieved only using NARL point process models.

III. EXPERIMENTAL RESULTS

In order to further validate the proposed algorithms ability
in tracking nonlinearities and complexity, an experimen-
tal RR dataset from healthy subjects and patients with
Congestive Heart Failure (CHF) was taken into account.
The heartbeat dataset was retrieved from a public source:
Physionet (http://www.physionet.org/). Each RR time series
was artifact-free (upon human’s visual inspection and artifact
rejection) and lasted about 50 min (small segments of the
original over 20 h recordings). These recordings have been
taken as landmark for studying complex heartbeat interval
dynamics. The models goodness-of-fit were evaluated using
the KS distance: the smaller the KS distance, the better the
model fit. Each of the three model performed a good fit on
all heartbeat series. The KS distance, in fact, is < 0.073
in all cases but one (NAR model fitting a CHF series with
KS = 0.103). For all the considered subjects, nearly all
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TABLE I
GROUP STATISTICS OF FEATURES FROM HEALTHY AND CHF SUBJECTS.

Model CHF (n=14) Healthy (n=16) P-Value

µRR(ms)
NAR 654.77±61.8 863.8±53.7 <4e−4

2nd NARL 671.55±69.6 864.7±53.3 <4e−3

σRR(ms)
NARL 8.12±2.0 23.7±7.2 <7e−4

2nd NARL 8.31±2.2 24.7±7.0 <5e−4

LF (ms2)
NAR 28.78±19.1 507.3±204.7 <3e−5

2nd NARL 7.28±6.1 316.0±127.2 <1.5e−5

HF (ms2)
NAR 40.29±31.6 627.0±408.2 <1e−3

2nd NARL 30.59±21.0 606.1±344.7 <5e−4

Balance
NAR 0.72±0.4 1.12±0.7 >0.05

2nd NARL 0.08 ± 0.1 0.86±0.7 <0.04

P (a)
NAR 0.00±0.02 0.09±0.8 >0.05

2nd NARL -0.33±0.29 -0.21±0.3 >0.05

σP (a)
NAR 0.02±0.02 0.08±0.05 <0.05

2nd NARL 0.62±0.22 0.48±0.06 >0.05
Mmean NAR 82.10±67.37 365.7±124.0 <0.02

(103) 2nd NARL 16.65±8.24 81.6±57.9 <2e−3

Pe
NAR 4.73±0.07 4.72±0.05 >0.05

2nd NARL 5.05±0.14 5.26±0.04 <3e−3

P1
NAR 6.44±1.26 6.99±0.40 >0.05

2nd NARL 9.25±0.06 8.76±0.42 <5e−3

P2
NAR 4.09±1.22 5.19±0.52 >0.05

2nd NARL 8.57±0.20 7.34±0.75 <3e−3

Hbis1 NAR 140.9±8.24 162.5±9.4 <4e−4

(103) 2nd NARL 146.7±7.06 166.5±6.7 <4e−4

LL NAR 42.3±29.3 919.5±709.9 <23e−5

(106) 2nd NARL 8.6±7.8 211.9±134.0 <2e−5

LH NAR 34.8±23.0 554.4±307.0 <1e−4

(106) 2nd NARL 46.6±34.0 549.6±351.5 <2e−4

HH NAR 3.7±2.6 39.9±34.9 <2e−3

(107) 2nd NARL 19.2±14.5 230.1±190.9 <7e−3

IDLEMd 3rd NARL 0.0014±0.0649 0.0135±0.0368 > 0.05

IDLEMAD 3rd NARL 0.0595±0.0120 0.0476±0.0066 < 0.05
P-values are obtained from the rank-sum test between the CHF and

healthy subject groups.

of the KS plots and more than 97% of the autocorrelation
samples were within the 95% confidence bounds. Regarding
the model order, AIC analysis indicated p = 6 ∼ 8 and
q = 1 ∼ 2 for the NAR model, p = 3 ∼ 4 and q = 2 ∼ 3
for the 2nd NARL model, p = 3 ∼ 4 and q = 2 ∼ 3
and q = 1 ∼ 2 for the 3rd NARL. In both NARL models,
α = 0.2 was chosen.

The instantaneous nonlinearity and complexity indices
coming from the NAR, 2nd NARL, and 3rd NARL were
evaluated in terms of statistical differences between healthy
and CHF subjects. Such a difference was expressed in terms
of p-values from a non-parametric rank-sum test under the
null hypothesis that the medians of the two sample groups
are equal. All features were calculated instantaneously with
a 5 ms temporal resolution considering the median values
over the estimated time series for further evaluations. Values
are expressed as median and its respective absolute deviation
(i.e. for a feature X , X = Median(X) ±MAD(X) where
MAD(X) = |X −Median(X)|). In Fig. 1, the RR interval
series from one representative CHF and healthy subject is
shown along with the related µRR, and IDLE. The bottom
panel shows a bi-dimensional plane which clearly portrays
that the combination of IDLEMd and IDLEMAD is able
to separate the two groups in terms of complexity.

Concerning the standard and bispectral features, the 2nd

NARL give improved discrimination in 8 of the 15 cases.
On average, the CHF patients show significantly lower µRR

and σRR. In addition, they show lower nonlinear interac-
tions between the sympathetic and parasympathetic systems,
evaluated by means of LL, LH and HH . Concerning the
complexity features from the 3rd NARL, IDLE results con-
firm lower complexity on time series from the pathological
population with respect to the healthy subjects, although
only IDLEMAD shows results indicating significant higher
complexity of cardiovascular dynamics in healthy patients.

IV. CONCLUSIONS

We have shown how, within a single point-process
paradigm, it is possible to characterize heartbeat nonlinear
and complex dynamics by using instantaneous estimations of
both higher order spectral features (e.g. the bispectrum), and
Lyapunov exponents (e.g. the IDLE index). The use of the
discrete Laguerre expansions on quadratic and cubic autore-
gressive Wiener-Volterra models gives several advantages,
such as long-term memory and improved performances. The
reported results demonstrate that the proposed point process
models are able to track the autonomic-mediated short-term
cardiovascular control dynamics in both patients and healthy
subjects, further characterizing the inherent nonlinearity and
complexity of the system. Importantly, results revealed re-
duced nonlinear interactions between the sympathetic and
parasympathetic systems, as well as lower complex dy-
namics, in CHF patients. These findings are in agreement
with the current literature, whereby cardiovascular disorders
affect complexity and variability, and may lead to serious
pathological events such as heart failure [11].
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