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Abstract— Network models have been used to capture, rep-
resent and analyse characteristics of living organisms and
general properties of complex systems. The use of network
representations in the characterization of time series complexity
is a relatively new but quickly developing branch of time series
analysis. In particular, beat-to-beat heart rate variability can
be mapped out in a network of RR-increments, which is a
directed and weighted graph with vertices representing RR-
increments and the edges of which correspond to subsequent
increments. We evaluate entropy measures selected from these
network representations in records of healthy subjects and
heart transplant patients, and provide an interpretation of the
results.

I. INTRODUCTION

It is generally believed that RR-intervals — time intervals

between heart contractions — carry information about the

cardiac control system, mainly driven by the autonomic ner-

vous system [1]. But heart transplantation (HTX) interrupts

the possibility of direct autonomic control over the beating of

the heart. As a consequence, heart rate variability in patients

after HTX is different from that of healthy people. However,

although the decision to transplant the heart is taken when

the patient’s life is in danger, in many cases already in a short

time after the surgery, it is amazing to see how the organism

of the patient recovers [2]. Therefore, when we investigate

signals recorded from the same patient with the passing of

time after HTX, we have a unique opportunity to observe the

heart at work when the direct control over healthy variability

is removed, and is then recovering, at least partially.

RR-signals, like any time series, can be easily mapped

out in a directed graph where the vertices represent signal

values and the edges are links between consecutive values in

a signal [3], [4]. The considerable success of the network

approach motivated us to explore these ideas to identify

patterns in RR-signals of people after HTX, and present

them in a way which could be useful in clinical practice

to observe the emergence of autonomic regulation. This

paper is a continuation of our earlier investigations (see

[5], [6]). In distinction from our previous studies, here we

search for the emergence of complexity in the transition
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networks constructed from increments between subsequent

RR-intervals. Hence, we study changes in the heart rhythm,

and not the rhythm itself.

A variety of measures have been proposed to determine

the relative importance of a single vertex within a graph

[7], [8]. Examples of such measures are given by centrality

degree (defined as the degree of a vertex), or eigenvector

centrality (defined as the dominant eigenvector of the ad-

jacency matrix). The adjacency matrix keeps the whole of

the information about the network. The transition matrix,

obtained by the normalization of the adjacency matrix,

introduces the probabilistic description. In the following, we

investigate the entropy revealed in this description in order

to assess the complexity of the signals studied.

II. DATA ACQUISITION

A. Groups of signals studied

In the following, two groups of signals are studied: healthy

and HTX. The healthy group consists of 41 recordings

(21 women and 20 men, age 19–34) which were obtained

from healthy young people — students of Gdańsk Medical

University. The HTX group is made of 25 recordings taken

from 14 patients after HTX. For all the patients, it was at

least 12 months since they had the HTX. The patients were

all in a stable condition and with no signs or symptoms of

rejection. Some recordings were taken from the same patient

but at different periods after the surgery which allows the

study of the progress in graft adaptation.

All the subjects underwent 24-hour Holter monitoring

during a normal sleep-wake rhythm. The Holter recordings

were analyzed by Delmar Reynolds Impresario software for

premature, supraventricular and ventricular beats, missed

beats and pauses. Finally, we annotated the signals manu-

ally, and time series with RR-intervals between subsequent

heartbeats, together with beat annotations, were obtained.

The series for our studies were constructed from 15 000

normal-to-normal beats, and obtained by linking together

sequences consisting of at least 500 consecutive beats. In

order to limit the influence of daily activity, these sequences

were selected from the nocturnal part of recordings.

B. Signal preprocessing

Our Holter equipment provided values with 128 Hz ac-

curacy. Therefore, RR-intervals are given with 7.8125 ms

resolution, which can be approximated by ∆0 = 8 ms. For
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this reason, we transferred signal numbers into multiples

of 8. In order to get RR-increments, differences between

subsequent values of RR-intervals were calculated. Thus,

RR-increments are also multiples of 8 with values limited

to 0,±8,±16 ± 24 . . .. Here, negative values correspond to

events of accelerations, positive values denote decelerations,

and 0 describes no change events.

To decrease the number of different values in a sequence

of RR-intervals, and as a consequence the number of distinct

vertices in a network, we performed the standard binning pro-

cedure with bins based on multiples of the signal resolution,

namely ∆ = k∆0 for k = 1, 2, . . ..
In parallel, we performed the same analysis with arti-

ficially modified cardiac signals. We refer to signals as

shuffled if cardiac RR-intervals are randomly shuffled. By

surrogate signals we mean signals obtained by randomization

of phases of the Fourier transform of cardiac RR-intervals

via iterative procedure focused on preserving the spectrum

[9]. The shuffled signals indicate independence in the data,

while the surrogate signals are said to preserve only linear

correlations in cardiac data. With the help of TISEAN [10],

we generated three shuffled and three surrogate signals for

each set of individual cardiac data.

III. TRANSITION NETWORK FOR

RR-INCREMENTS

Let b = {b0, b1, . . . , bi, . . . , bN} be a sequence of RR-

intervals binned with some ∆. The subscript i refers to the

time order. Let c = {c1, c2, . . . , ci, . . . , cN} be a sequence

of corresponding RR-increments, i.e., ci = bi − bi−1.

Since the number of different values is finite

K, we can enumerate them from the smallest

Cmin = mini{c1, c2, . . . cN} to the greatest

Cmax = maxi{c1, c2, . . . cN}, and consider as labels

for vertices in the network:

Cmin = C(1), C(2) = C(1) +∆, . . . ,
Cmax = C(K) = C(1) + (K − 1)∆ .

(1)

Thus each vertex label denotes a change in RR-interval

length.

A directed edge (C(I), C(J)) between two vertices C(I)

and C(J) is plotted if C(I) and C(J) represent a pair

of consecutive events in a sequence c, namely (ci =
C(I), ci+1 = C

(J)). If a given pair occurs many times in c

then the weight of a corresponding edge increases to meet the

counts of occurrences. The loops, if they appear, denote the

consecutive decelerations or accelerations of the same size.

The loop accompanying vertex 0 demonstrates the presence

of two consecutive ’no change’ events.

The entire topology of the network is entailed in the so-

called adjacency matrix A —a K ×K matrix of which the

element A(I)(J) equals the weight of the out-going edge

from vertex C(I) to vertex C(J), or is zero if there is

no edge between these vertices. Since, the edges follow a

time series order, each out-going edge is accompanied by

an in-coming one. In consequence, the total of all weights

of the out-going edges is equal to the sum of weights of

the in-coming edges, and matches a given RR-increment

occurrence of a signal. Therefore, if elements of each row

(I) : (1), . . . , (K) of matrix A are divided by the total

weight of vertex C(I), then the resulting matrix T describes

the probability for transitions between two states given that

the C(I) state occurs. T is right stochastic, i.e., the sum of

each row is 1, and its maximal right eigenvalue is 1. The

matrix T, called the transition matrix, is said to describe a

Markov walk on a network where a walker moves from the

vertex C(I) to C(J) with probability T(I)(J).

The role of vertices in a network can be obtained from

the stationary distribution arising from the transition matrix

T. The stationary state µ = {µ(I) : (I) = C
min, . . . , Cmax}

is given as the eigenvector of T corresponding to eigenvalue

1. Consequently, we can calculate the entropy as follows:

S = −

K∑

(I)=1

µ(I)

K∑

(J)=1

T(I)(J) log T(I)(J). (2)

IV. RESULTS

RR-signals of people after HTX are very plain. The

absence of direct influence of the autonomic nervous sys-

tem results in their very low variability. In consequence,

the network representation of RR-increments consists of

significantly fewer vertices. Let us explain this feature by

presenting values of the mean adjacency matrices found for

healthy and HTX signals. In Fig. 1 they are shown as density

plots.

Fig. 1. Density plots for mean adjacency matrices obtained from RR-
increments for the main cardiac groups: healthy and HTX at the signal
resolution, i.e., ∆ = 8 ms. Notice the difference between scales in the
plots.

From Fig. 1 we see that the network constructed from

signals of HTX patients is sharply concentrated around the

transition from a no change event to the smallest increments

possible, namely to 0,±8,±16. Signals from the healthy

group lead to networks where there are many transitions

playing an equivalent role. We illustrate this property in

Fig 2. However, in order to make the network structure

readable, the plotted networks are constructed from signals

binned with ∆ = 32 and ignoring vertices of probability less

than 1%. Since the binning is applied to RR-signals, any

calculated change can be strengthened or weakened. There-

fore, we cannot say exactly which elementary increments,

even in the case of the loop over vertex 0, a given edge
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represents. However, despite the no change event, most of

them are related to subsequent RR-increments of −16,−8
or 8, 16. There are counts given for some transitions along

corresponding edges to illustrate their importance.

Fig. 2. The mean networks for the healthy (upper) and HTX (bottom)
groups with counts for important transitions, and δ. The edge width mimics
counts for given transitions. We use the following color scheme for edges:
no change - violet; ∆- green; 2∆ - blue ; 3∆ - red; 4∆ - yellow; other
cases - black. The diagrams were prepared with the help of Pajek[11].

Now let us present properties of stationary measures

arising from the mean transition matrices. The mean matrices

are found after averaging transition matrices obtained from

the three types of signals considered: cardiac, surrogates and

shuffled . In Fig. 3 properties obtained for the healthy group

are presented, and in Fig. 4 features of the HTX group.

One should note that the binning procedure does not

change the importance of vertices. For each group studied,

the main measure is associated with no-change transitions.

However, while in the case of the healthy group it takes

values from 0.08, for ∆ = 8, to 0.47 for ∆ = 80, for

signals from the HTX group we obtain 0.41 and 0.92, re-

spectively. The surrogate data provide similar characteristics

for the main transitions. One can find discrepancies when

decelerations are large, namely for RR-increment > 150 ms.

Fig. 3. The plots of eigenvectors for the eigenvalue 1 of the mean
transition matrices obtained for signals of different types: cardiac, shuffled
and surrogates, with different bin size ∆ for the healthy group (log-plots),
and resulting entropy.

Fig. 4. The plots of eigenvectors for the eigenvalue 1 of the mean
transition matrices obtained for signals of different types: cardiac, shuffled
and surrogates, with different bin size ∆ for the HTX group (log-plots),
and resulting entropy.

The shuffled signals provide completely different plots from

the original signals.

The small difference between entropies found for cardiac

and surrogate signals of the healthy group suggests that

changes in RR-intervals follow linear stochastic dynamics,

see Tab. I. However, in the case of HTX signals, we can

expect that the rhythm of the heart in patients after HTX is

driven by nonlinear interactions. Moreover, we can suppose

that stochastic linearity of the healthy dynamics is related to

the direct influence of the autonomic nervous system.

Finally, let us observe whether the entropy changes as

time passes after the surgery. In Fig. 5 we show the entropy

calculated for each individual HTX patient with indications

of the time after HTX. It is shown that entropy increases in

most cases, however the small group of signals considered
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TABLE I

THE MEAN ENTROPY ± 0.95 CI OF THE MEAN AT MAXIMAL

RESOLUTION ∆0 FOR CONSIDERED GROUPS OF SIGNALS.

cardiac surrogates shuffled

healthy 1.35± 0.061 1.38± 0.041,2 1.64± 0.02

HTX 0.54± 0.03 0.61± 0.022 1.14± 0.04
1: all entries are significantly different (Mann-Whitney test,
P < 0.05), except healthy cardiac versus healthy surrogates

which are not significantly different.
2: entropy obtained for each surrogate signal is very similar to
(at most a little greater than) the entropy found for each
corresponding cardiac signal.

Fig. 5. Entropy obtained from individual signals of patients from
the HTX group. Marks in the plot are numbers of months after
HTX. The gray lines are used to lead the eye.

does not allow the derivation of a quantitative measure of the

dynamics of this effect. This will, therefore, be the subject

of future study.

V. CONCLUSIONS

The intrinsic cardiac nervous system remodels itself after

cardiac transplantation, yet how the partially reconstituted,

heterogeneous and inconsistent neuronal activity is reflected

in heart rate variability is still an open question and the

subject of intensive research [12], [13], [2].

Our results show a systematic increase with time after

transplantation in network complexity reflected in entropy

growth, for HTX patients. This may provide a unique new

insight into quantifying the progress of the restoration of the

dynamics of heart rate control in HTX patients.

Parasympathetic reinnervation is the last step in the pro-

cess of restoring autonomic influence on the heart rate after

transplantation and is not a rule [2]. Therefore, we can

suspect that the fact that the networks for the HTX patients

investigated concentrate on transitions less than or equal to

8 ms is due to the lack of the parasympathetic control of the

heart rate.

Furthermore, both the networks of RR-increments and the

corresponding entropy values, can be directly related to one

of the standard time-domain indices of heart rate variability,

i.e. pNN50, which quantifies the ratio of pairs of successive

normal RR-increments larger than 50 ms. This index was

reported to provide information about the control of the sinus

rhythm mostly related to the influence of the parasympathetic

part of autonomic regulation [14]. Indeed, the concentration

on transitions less than or equal to 8 ms, observed in the

HTX patients, corresponds with a small pNN parameter.

Analysis of networks constructed from shuffled signals

provides yet another argument that there are correlations

between the subsequent RR-intervals. Properties of networks

obtained from surrogate signals indicate at a strong presence

of linear stochastic dynamics which is impaired in the case

of patients after HTX. The methodology presented may,

therefore, be useful to gain further insight into the dynamical

processes driving the changes in the heart rhythm.

Last but not least, our work may have a clinical applica-

tion - the networks of RR-increments reflect the dynamics

of heart rate and can be visualized in easy-interpretable

graphical figures. They provide a uniform presentation of

heart rate complexity which could potentially be appealing

to cardiologists. The associated numerical values of graph

entropy provide an accompanying quantitative measure of

the graph complexity.
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