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Abstract— The influence of respiration on the heart rate is a
phenomenon known as respiratory sinus arrhythmia. However,
effects of respiration are often ignored in studies of heart
rate variability. In this paper, we take respiratory influences
into account by separating the tachogram in two components,
one related to respiration and one residual component, using
orthogonal subspace projection. We demonstrate that it is
important to remove respiratory influences during classification
of rest and mental stress. Using merely the original tachogram,
the classification accuracy is 57.13%, while the use of the
residual tachogram results in an almost perfect classification
(accuracy = 97.88%).

I. INTRODUCTION
The variability of the heart rate (HRV) is widely studied

as it is a simple and noninvasive tool to assess the activity of
the autonomic nervous system (ANS). From the tachogram,
several measures, such as spectral indices, that quantify HRV
are defined [1]. The power in the low frequency (LF) band,
defined from 0.04 to 0.15 Hz, is linked to both sympathetic
and parasympathetic activity, while the high frequency (HF)
power, ranging from 0.15 to 0.40 Hz, is believed to contain
only parasympathetic influences. The latter is often used as
an index of respiratory sinus arrhythmia (RSA), the well-
known phenomenon that the heart rate modulates in phase
with respiration [2]. However, many studies show that the
magnitude of RSA changes with the respiratory frequency
and tidal volume, independently of changes in vagal control
[3], [4]. This makes that the interpretation of HRV measures
is questioned. Several remedies are proposed to deal with
this issue, e.g. the use of alternative measures of RSA [3],
[5], but so far, no agreement has been reached about a valid
alternative for the conventional RSA definition.

In this study, we aim to show that it is not only important
to take respiratory influences on HRV into account to make
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correct interpretations of ANS activity, but that respiration
should also be included in HRV analyses because differences
in the HRV, unrelated to respiration, might be masked by
differing respiratory parameters such as frequency and tidal
volume. We will demonstrate the latter in the application
of stress monitoring. We will show this by separating the
tachogram (RRorig) in two components, i.e. one related to
respiration (RRresp) and one residual component (RRres) that
contains all variations in the heart rate that are unrelated to
respiration. The separation will be conducted using orthogo-
nal subspace projection (OSP). Next, spectral HRV measures
are computed from both the residual tachogram and RRresp,
and the performance is assessed by classification of rest and
stress.

II. METHODS

A. Data

The data used in this research were measured at the
Department of Psychology of the KU Leuven (Leuven,
Belgium) in the context of a broader study [6], [7]. The
electrocardiogram (ECG, sampling frequency fs = 200 Hz)
and respiration (fs = 50 Hz) of 43 healthy students (age: 18-
22 years) were recorded using the LifeShirt System (Vivo-
metrics Inc., Ventura, CA). Respiration was recorded using
respiratory inductive plethysmography around the abdomen
and the ribcage. Based on these two signals, the tidal volume
is computed. This volume will further be considered as the
respiratory signal (RESP).

The participants were instructed to perform two tasks. A
first task was a nonstressful attention task during which the
students had to indicate the highest number on a computer.
The second task was designed to induce mental stress using
arithmetic equations. The full protocol consists of baseline
recording, one attention task (AT) and two mental stress tasks
(MT1 and MT2), each followed by a resting period. Each
task had a duration of 6 minutes. For this study, only two
randomly chosen resting periods and the two mental stress
tasks of 40 students are used. The experiment was approved
by the Ethics Committees of the Department of Psychology
and of the Faculty of Medical Sciences.

B. Preprocessing

The tachogram is constructed from the detected R peaks in
the ECG using the Pan-Tompkins algorithm. All detections
are manually verified and corrected where needed. Next, the
tachogram and respiratory signal are resampled at 4 Hz using
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cubic spline interpolation and the respiratory signal is high-
pass filtered with a cut-off frequency of 0.05 Hz to remove
baseline wander.

In order to increase the number of signals in the dataset,
each period of 6 minutes is divided in segments of two
minutes, with one minute overlap. This procedure results
in 10 segments of rest and 10 segments of stress for each
subject.

All processing steps of the data are performed in MAT-
LAB R2012a (MathWorks, Natick, MA).

C. Orthogonal Subspace Projection

Orthogonal subspace projection decomposes a signal in
two independent components using a given reference, in this
case the respiratory signal [8], [9].

Consider X the basis that is constructed of the respiratory
signal. The projection matrix P is then defined as

P = X(XTX)−1X (1)

and is used to project a signal, i.e. RRorig, onto the respi-
ratory basis X via (2), yielding the respiratory component
RRresp of the tachogram

RRresp = P RRorig. (2)

Consider Q the orthogonal complement of P , then the
residual component RRres is determined by

RRres = Q RRorig (3)

or
RRres = RRorig −RRresp. (4)

The basis X that defines the respiratory subspace is con-
structed using the detail signals of the wavelet decomposition
of the respiratory signal. The Daubechies 4 wavelet (db4) is
taken as mother wavelet and the decomposition is performed
up to level 4. The approximation signal is not enclosed in
the basis. In order to take the effect of previous samples
into account, delays of the respiration up to 3 seconds
(12 samples) are included. The use of both the wavelet
decomposition and delays result in a respiratory basis X that
consists of 48 components.

D. Classifier Design

The added value of separating respiratory influences from
the tachogram in HRV analyses is assessed by classification
of rest and stress segments. A least squares support vector
machines (LS-SVM) classifier is trained using a radial basis
function (RBF) kernel and 5-fold cross-validation to avoid
overfitting [10]. The data of 32 randomly chosen subjects
are used in the training set and the performance is tested
on the remaining 8 subjects. This setup results in subject-
independent classifiers.

Consider stress as the positive class and rest as the negative
one, then the performance of each classifier is assessed
by means of the sensitivity (S+), specificity (S−), positive
prediction value (PPV ), negative prediction value (NPV ),

the accuracy (acc) and the area under the ROC (receiver
operating characteristic) curve (AUC).

The features used to classify the data segments are spectral
indices of each tachogram (RRorig, RRres and RRresp). The
power in the low (LF ) and high frequency (HF ) band
are computed via Welch’s method, using a 1024 point fast
Fourier transform (FFT), a periodic Hamming window of a
length such that eight equal sections of the tachogram are
obtained, and an overlap of 50%. Furthermore, LFnu =

LF
LF+HF (normalized units), HFnu = HF

LF+HF , the ra-
tio LF/HF and the power in the total frequency band
TF = LF + TF are considered. These spectral indices
are computed for three classifiers using RRorig, RRres and
RRresp separately. Another classifier that combines RRres
and RRresp is constructed.

In addition, a classifier that includes respiratory informa-
tion in the original tachogram is implemented in order to
make a fair comparison with the residual tachogram, because
RRres is obtained using additional respiratory information.
Therefore, a last classifier that uses the recorded respiratory
signal (ref) is created using three new features: LFnuref,
HFnuref and LFnu/HFnuref. These features employ the
normalized power as the respiratory signal is in arbitrary
units. The following classifiers are considered:

• RRorig: LForig, HForig, LFnuorig, HFnuorig,
LF/HForig, TForig

• RRorig+RESP: LForig, HForig, LFnuorig,
HFnuorig, LF/HForig, TForig, LFnuref, HFnuref,
LFnu/HFnuref

• RRres: LFres, HFres, LFnures, HFnures, LF/HFres,
TFres

• RRresp: LFresp, HFresp, LFnuresp, HFnuresp,
LF/HFresp, TFresp

• RRres+RRresp: LFres, HFres, LFnures, HFnures,
LF/HFres, TFres, LFresp, HFresp, LFnuresp, HFnuresp,
LF/HFresp, TFresp, TFnures = TFres/(TFres+TFresp),
TFnuresp = TFresp/(TFres + TFresp), TFres/TFresp.

The most important features of each classifier are deter-
mined by 5-fold application of automatic relevance determi-
nation (ARD) [10] using different training and test sets. The
performance measures of all classifiers are averaged over
these 5 runs.

III. RESULTS AND DISCUSSION
A. Orthogonal Subspace Projection

Fig. 1 shows an example of the time signals and correspon-
ing spectra after application of OSP. The original tachogram
is clearly influenced by respiration. This respiratory influence
is contained in RRresp while the modulations in the residual
tachogram are not related to respiration. The power spectra
report the same conclusion; the power in the HF band of
RRorig is mainly related to respiration. After separation,
this is captured in the spectrum of RRresp. Remark that the
residual tachogram still contains power in the HF band as
well as at the main respiratory frequency.

OSP is chosen as a suitable method to separate the
tachogram in two independent components as it combines
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Fig. 1. An example of the obtained signals after application of OSP. The tachograms originate from subject 3 during the first two minutes of rest. The
corresponding power spectra are shown on the right. (a) respiratory signal RESP; (b) original tachogran RRorig; (c) respiratory component of the tachogram
RRresp; (d) residual tachogram RRres

Fig. 2. ROC curves of all classifiers

the advantages of two techniques that successfully proved
their efficiency to separate respiratory influences from the
tachogram. The first technique uses an autoregressive moving
average with exogenous inputs (ARMAX) model to assess
the respiratory component RRresp as a weighted sum of
previous respiratory samples. Similar as in OSP, the least
squares solution was used, with the difference that the basis
X only consists of delayed respiratory signals [11]. The
second technique uses multiscale principal component anal-
ysis (MSPCA) to estimate RRresp using projections between
the respiratory signal and the original tachogram in several
frequency bands via their wavelet decomposition [12]. Note
that a preliminary study revealed that OSP is more efficient
than ARMAX and MSPCA to separate the tachogram in
two components. Model-based approaches to decompose the
power spectrum of the tachogram in partial spectra are also
presented in the literature, with even the inclusion of blood
pressure measurements [13]. Future research should focus on
including blood pressure information, as well as an extensive

TABLE I
PERFORMANCE MEASURES OF EACH CLASSIFIER (IN %)

RRorig RRorig RRres RRresp RRres
+ RESP + RRresp

S+ 63.75 60.75 97.00 75.00 91.00
S− 50.50 55.00 98.75 57.00 98.25

PPV 56.29 57.45 98.73 63.56 98.11
NPV 58.21 58.36 97.05 69.51 91.61
acc 57.13 57.88 97.88 66.00 94.62
AUC 58.24 60.63 99.89 71.19 99.33

S+: sensitivity; S−: specificity; PPV : positive predictive value; NPV :
negative predictive value; acc: accuracy; AUC: area under the ROC curve

comparison between the different methods.

B. Classification in Rest and Stress

Table I and Fig. 2 show the mean performance of
each classifier. We hypothesized that the original tachogram
contains modulations from respiration and non-respiration
related variations, and that separation of both will reveal
new information and lead to an increased performance
when rest and stress are classified. This study confirms
the postulated hypothesis; based on the original tachogram,
classification in rest and stress is almost random (accuracy
= 57.13%). Even when respiratory information is added,
the performance of the classifier does not improve. This
indicates that although respiration is influenced by stress,
it is not an important marker to classify stress. Possibly, the
chosen features to represent the respiratory pattern are too
simple. Other features might improve the performance of the
classifier. This observation is confirmed when classification
is carried out using only RRresp; the performance is better
than with the original tachogram, but the accuracy is barely
66%. An apparent improvement is found when RRres is
used, yielding an almost perfect classification (accuracy =
97.88%). Interestingly, combining RRres and RRresp does
not lead to an increased performance, on the contrary.
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From these observations we can deduce that respiration
not only leads to false interpretation about ANS activity, but
the effect of respiration on the tachogram might disguise
differences in HRV due to differing respiratory patterns.
This study shows that the original tachogram contains HR
variations, unrelated to respiration, that seem to be very
important to distinguish stress from rest, but these variations
are masked by the dominant respiratory influence on the heart
rate.

In order to determine the most relevant features for each
classifier, automatic relevance determination is applied. The
features that are at least three times indicated in the 5-fold
iteration are indicated below:

• RRorig: LForig (3), HFnuorig (3)
• RRorig+RESP: LForig (3), HForig(3), TForig (5),

LFnuref (4)
• RRres: LFnures (5), HFnures (5)
• RRresp: HFresp (5), LF/HFresp (3), TFresp (4)
• RRres+RRresp: LFres (4), HFres (4), LFnures (5),

HFnures (5), TFres (5), LFresp (5), HFresp (5),
LFnuresp (4), HFnuresp (4), LF/HFresp (4), TFresp (5).

A resemblance between the selected relevant features and the
performance of each classifier can be observed as the inferior
performing classifiers do not have consistently important
features. RRres on the other hand has two key features while
the remaining features are never selected by ARD. Fig. 3
demonstrates the importance of LFnures = LFres/TFres
in the classification of rest and stress. An almost perfect
separation is obtained. Moreover, the results indicate that
for the same LFres, HFres is lower during stress than during
rest as TFres is higher in rest. This means that, as expected,
the parasympathetic activity is reduced during stress.

Another important advantage of the followed methodology
is that the classification is subject-independent. In most
cases, stress has been considered as a subject-dependent
phenomenon and classification was performed in a subject-
specific manner, as in [11]. The use of subject-independent
classifiers might also explain why inclusion of respiratory
information does not lead to an improvement of the per-
formance of the classifier. It has been demonstrated that

Fig. 3. The importance of LFnures = LFres/TFres in the classification
of rest and stress is shown: LFres versus TFres

stress influences the respiratory pattern, but these conclusions
are deduced from within-subject comparisons [6], [14]. On
a subject-independent level, this information seems to be
insignificant.

IV. CONCLUSIONS
This study demonstrated the importance and the use of

separating respiratory influences from the tachogram in the
application of stress monitoring. The residual tachogram
contains valuable information, that is otherwise masked by
respiratory influences, to distinguish a resting state from a
stress condition. Other applications should confirm the added
value of the proposed technique and extensions to multiclass
situations should be made.
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