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Abstract— Unobtrusive continuous monitoring of important
vital signs and activity metrics has the potential to provide
remote health monitoring, at-home screening, and rapid no-
tification of critical events such as heart attacks, falls, or
respiratory distress. This paper contains validation results of a
wireless Bluetooth Low Energy (BLE) patch sensor consisting
of two electrocardiography (ECG) electrodes, a microcontroller,
a tri-axial accelerometer, and a BLE transceiver. The sensor
measures heart rate, heart rate variability (HRV), respiratory
rate, posture, steps, and falls and was evaluated on a total of 25
adult participants who performed breathing exercises, activities
of daily living (ADLs), various stretches, stationary cycling,
walking/running, and simulated falls. Compared to reference
devices, the heart rate measurement had a mean absolute error
(MAE) of less than 2 bpm, time-domain HRV measurements
had an RMS error of less than 15 ms, respiratory rate had an
MAE of 1.1 breaths per minute during metronome breathing,
posture detection had an accuracy of over 95% in two of the
three patch locations, steps were counted with an absolute error
of less than 5%, and falls were detected with a sensitivity of
95.2% and specificity of 100%.

I. INTRODUCTION

With the rising cost of healthcare and an aging worldwide
population, there is an increasing need for effective methods
of reducing hospital readmissions, home-based screening
tests, and technologies that allow for aging-in-place. Re-
mote monitoring technologies have the potential to provide
near real-time health information and may also facilitate a
means to observe important cardiopulmonary and activity
information in patients and aging adults in the comfort of
their own homes. The reduction in size of digital processors,
accelerometers and components for electrocardiographic
(ECG) monitoring has allowed such technologies to become
increasingly unobtrusive. Furthermore, the widespread use
of smartphones and wireless connectivity make real-time
monitoring in ambulatory conditions possible.

The ability to monitor ECG and heart rate can provide
important information for patients with cardiovascular dis-
eases such as supraventricular tachycardia (SVT) or con-
gestive heart failure (CHF). Furthermore, rapid detection
of acute events like myocardial infarctions (MI) or atrial
fibrillation (AF) is possible. Monitoring of breathing rate
is also important for the screening of abnormal respiration
that may occur in obstructive sleep apneas or CHF. Activity
monitoring can be highly useful for providing a snapshot
of the total daily activity in patients who require moderate
exercise, for detecting and providing notifications of falls in
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the elderly population, or determining duration and position
in bed for those in assisted living facilities.

Here, a performance validation is presented of a wireless
Bluetooth Low Energy (BLE) patch sensor that remotely
monitors ECG, heart rate (HR), heart rate variability (HRV),
respiration rate, posture, steps, and falls. The sensor, de-
signed by Vital Connect Inc., transmits these data to a
relay (e.g., smartphone, wristwatch, pendant or wall-mounted
station) that can then send the appropriate information to the
cloud, healthcare providers, caregivers, or loved ones.

II. METHODS

A. Vital Connect Patch

The Vital Connect sensor device consists of two main
components: a disposable adhesive patch that houses the
ECG electrodes and battery, and a reusable electronics
module that houses the embedded processor, tri-axial ac-
celerometer, and BLE transceiver (Fig. 1). The patch can
be worn in three possible locations: (1) in a modified lead-II
configuration on the left midclavicular line over intercostal
space (ICS) 2, (2) vertically over the upper sternum, or (3)
horizontally on the left midclavicular line over ICS 6. The
patch includes a skin adhesive on its base and is powered
by a coin-cell battery. Two electrodes are positioned on the
bottom of the patch (one at each end), and each electrode is
covered with a disc of hydrogel. These electrodes allow for
the recording of a single-lead bipolar ECG at a sampling rate
of 125 Hz. The patch has a typical wear cycle of three days,
and continuous monitoring is possible even if the patch is
placed in a different location for each wear cycle.

Fig. 1. Disposable Vital Connect patch sensor and reusable electronics
module
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A tri-axial accelerometer is present within the electronics
module that allows for the recording of accelerations within
the range of ±4 g per axis with a resolution of 0.0078 g,
where g = 9.81 m/s2 is the gravitational acceleration. These
acceleration signals are sampled at 62.5 Hz, and an automatic
calibration during an initial period of standing is performed
to rotate the coordinate system and obtain the true superior-
inferior, anterior-posterior, and left-right acceleration axes.

The electronics module processes incoming signals, runs
algorithms, and transmits a stream of desired data via an
encrypted BLE wireless link to a smartphone (e.g. iPhone),
which can then display and store the data. The smartphone
may then relay portions of the information to a cloud-
based server that can perform additional processing, send
notifications to caregivers, or monitor long-term trends.

QRS complexes are automatically detected from the ECG
waveforms using a wavelet algorithm [1, 2]. The R-R inter-
vals are computed as the time duration between successive
QRS-complex peaks, and these data are output for later use in
the computation of HRV. The reciprocal of the R-R intervals
is computed to determine an instantaneous heart rate that is
passed through a 10-beat lowpass filter to obtain a smooth
heart rate profile.

Respiration rate is estimated using a combination of
two ECG-derived respiratory signals (the respiratory sinus
arrhythmia (RSA), and the QRS-amplitude) and the ac-
celerometer signal. Peak-picking is performed on each of
the signals, and the respiratory rate from each signal is
computed independently. A quality metric, Q, is derived that
estimates the regularity of the peaks in each of the signals,
and these quality metrics are used to compute a weighted
average of the individual respiratory rates to obtain a final
breathing rate estimate. Additional details on the respiratory
rate computation are provided in [3].

Fall detection is performed using the tri-axial accelerom-
eter data. Similar to the algorithm described in [4], a fall is
detected by checking several criteria: (1) impact or free-fall,
(2) large differences in acceleration over a small temporal
window, (3) change in thoracic posture from vertical to
horizontal, and (4) low activity for a specified duration after
the change in posture.

The Vital Connect patch sensor also performs posture
detection to identify the subject as upright, leaning, lying,
walking, or running within 5 seconds of posture change. The
static postures are detected based on the thoracic angle of the
individual, while walking and running are detected based on
a threshold of acceleration in the vertical axis as well as
the successful detection of steps. Steps are counted using
peak-picking on the vertical acceleration. Only peaks that
are regularly spaced in time (based on a threshold on the
kurtosis of the inter-step intervals) are counted as true steps.

B. Experimental Protocol

A total of 25 subjects participated in the study, and
each subject wore a total of three patches (one in each
of the recommended locations) for the duration of the test
to evaluate the performance at each location independently.

pedometers

(FitBit & Omron)
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Fig. 2. Patch sensor and reference device locations

Subjects were recruited from two populations: a group of
older adults for testing of heart rate, HRV, breathing rate,
specificity of fall detection, and posture, and a group of
younger adults for testing of the pedometer and sensitivity
of fall detection. Data from each patch were streamed to an
iPhone in real-time and stored for later processing.

The 15 older subjects (7 male, 8 female) were between the
ages of 63 and 79 (70±5 years), with body mass between
44.7 kg and 99.2 kg (69.4±14.8 kg) and height between 147
cm and 185 cm (167±11 cm). These subjects performed
metronome breathing and a set of activities of daily living
(ADLs). The breathing exercises included 4 minutes of
spontaneous breathing, followed by metronome breathing at
12, 15, 18, 21, and 24 breaths per minute (BrPM) for 3
minutes each with a one-minute break between each block.
ADLs included sitting and standing from various chairs,
reclining and rocking in a chair, lying on a bed, bending,
walking, and climbing stairs.

During the test, the older subjects also wore a number of
reference devices to allow for comparison of measurements
(Fig. 2). An Actiheart reference device for recording heart
rate and inter-beat intervals was worn horizontally at left
ICS 2. To monitor breathing rate, subjects wore a nasal
cannula that was attached to an Oridion Capnostream bedside
capnography monitor. Two pedometers for measuring steps
(manufactured by Omron and FitBit) were worn at the waist.

The 10 younger subjects (5 male, 5 female) were between
the ages of 18 and 29 (25±3.6 years), with body mass
between 52 kg and 79 kg (66.4±10.1 kg) and height between
157 cm and 183 m (170±8.5 cm). These subjects performed
a series of stretches, stationary cycling, walking, running, and
simulated falls. During the pedometer portion of the test, the
subject as well as the experimenter used a manual handheld
counter to count the total number of steps taken. The manual
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Fig. 3. Boxplots of mean absolute error of heart rate measurements with
respect to patch location and activity. The black horizontal line indicates
the median, the box indicates the 25th and 75th percentiles (interquartile
range), and the whiskers indicate the extreme values not considered outliers.
Outliers are shown by red crosses determined as points that lie beyond 1.5
times the interquartile range above the 75th or below the 25th percentiles.

step counts, as well as all pedometer and patch step counts,
were recorded before and after each activity. The participants
also performed a total of 11 types of simulated falls onto
crash mats, with each fall type performed three times. Falls
included falling forward, backward, to the left, and to the
right with knees straight or bent, attempting to sit on but
missing a chair, tripping over an object, and falling out of
bed.

For all subsequent analysis, patches that had mean contact
impedance greater than 5 MΩ were excluded because of poor
contact with the skin. In most cases, this poor skin contact
occurred in male participants with an abundance of chest
hair. The impedance threshold resulted in excluding 5 out of
75 total patches.

III. RESULTS

A. Heart Rate and Heart Rate Variability

The heart rate obtained from the Vital Connect Patch was
compared to that obtained from the Actiheart device. Periods
where the Actiheart device reported no heart rate were
excluded. For each patch, the mean absolute error (MAE)
and the root-mean-square error (RMSE) of the instantaneous
heart rate as compared to the Actiheart reference device were
computed. This analysis was done separately for the 25-
minute period of sitting during the breathing exercises, and
the 30-minute period of ADLs. The median MAE was less
than 2 bpm in all three locations for the sitting period as
well as overall, and was less than 3 bpm during the ADLs
(Fig. 3 and Table I).

Measures of heart rate variability (HRV) were computed
offline using non-overlapping 5-minute epochs of R-R in-
terval series obtained from the patch sensor and Actiheart
device during the first 25 minutes of the ADL protocol.
The HRV measures include mean of normal R-R inter-
vals (meanNN), standard deviation of normal R-R intervals
(SDNN), root-mean-square of the difference of successive
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Fig. 4. Boxplots of posture detection accuracies.

R-R intervals (RMSSD), and triangular index (Triang8)
calculated as the ratio of total number of R-R intervals to the
height of the histogram with bin width of 8 ms. The MAE
and RMSE calculated with reference to HRV measures based
on Actiheart are given in Table I.

B. Respiratory Rate

To assess the accuracy of the respiratory rate measure-
ment, the final minute of each metronome breathing block
was extracted, and the MAE was computed between the
patch-derived respiratory rate and the capnography-derived
respiratory rate. The resulting MAE was 1.0±0.1 breaths
per minute (BrPM), 1.1±0.1 BrPM and 1.0±0.1 BrPM from
locations 1, 2 and 3, respectively. Further details regarding
the respiratory rate performance results can be found in [3].

C. Posture and Steps

Posture accuracy was computed using the data from the
elderly participants performing ADLs. The accuracy was
computed as the percent agreement between the estimated
posture from the patch and periods of known posture. The
periods of known posture included a 4-minute block of sitting
and standing, a 2-minute block of standing and lying supine,
a 3-minute block of lying in different positions (supine,
prone, left lateral, and right lateral), and a 2-minute block of
walking. The median accuracies were highest for location 3
at 96.3%, slightly lower for location 2 at 95.4%, and lowest
for location 1 at 88.1% (Fig. 4).

The pedometer functionality of the patch sensor was tested
using the data from the younger participants. To measure
the sensitivity of the step counting algorithm, the absolute
percent error of step counts was computed with respect to a
manual step count (performed by the experimenter) during
blocks of walking, running, and stair climbing. The speci-
ficity of the algorithm was measured during the stretching,
cycling, and rocking chair blocks, and the ratio of false
steps to all possible step-like movements was computed. The
mean absolute percent error was 3.6%, 2.9%, and 4.0% for
locations 1, 2, and 3 respectively. The mean ratio of false
steps to all possible step-like movements was 11.7%, 6.9%,
and 11.9% for the three locations respectively (Fig. 5).
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TABLE I
HEART RATE AND HEART RATE VARIABILITY ERRORS GIVEN AS MEAN ± STANDARD ERROR

HR - sitting (bpm) HR - ADLs (bpm) MeanNN (ms) SDNN (ms) RMSSD (ms) Triang8
loc. MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
1 1.1±0.1 1.7±0.2 2.7±0.3 4.3±0.6 6.8±1.6 7.5±1.7 9.1±2.4 11.5±3.2 12.1±3.0 14.6±3.6 1.0±0.2 1.2±0.3
2 1.2±0.1 1.9±0.2 2.6±0.4 3.8±0.6 7.5±1.6 8.3±1.8 8.7±2.5 11.4±3.6 11.7±2.9 13.8±3.4 0.9±0.2 1.0±0.2
3 1.1±0.1 1.8±0.2 2.7±0.2 4.2±0.5 5.5±1.3 6.2±1.6 8.8±2.9 10.8±3.6 11.3±2.7 13.5±3.3 1.0±0.2 1.2±0.3
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Fig. 5. Boxplots of step counting accuracy with respect to manual count.
(left) Absolute percent error of step counts during walking/running. (right)
Ratio of false steps to all step-like movements during stretching and cycling.

TABLE II
FALL DETECTION SENSITIVITY (%)

Location
Fall Type 1 2 3 avg

Forward (legs straight) 100 96.7 100 98.9
Backwards (legs straight) 100 100 100 100

Left (legs straight) 90.0 100 93.3 94.3
Right (legs straight) 100 100 100 100

Forward (knees bent) 90.0 86.7 93.3 90.0
Backwards (knees bent) 100 100 100 100

Left (knees bent) 100 100 96.6 98.9
Right (knees bent) 100 100 92.3 97.6

Tripping 96.7 100 89.7 95.5
Rolling out of bed 96.2 91.3 100 96.2

Missing a chair 80.0 73.3 76.7 76.7
avg 95.7 95.3 94.7 95.2

D. Fall Detection

To estimate the sensitivity of the fall detection algorithm,
the simulated falls performed by the young subjects were
used. In total, 330 physical falls were performed among the
10 subjects, resulting in 990 captured fall data (each fall
captured by three patches). Data from 23 falls were excluded
from analysis due to loss of data from the patch during the
fall. The overall sensitivity of the detection algorithm was
95.2%. A detailed breakdown of sensitivities between patch
locations and fall types is shown in Table II.

Specificity was estimated using the ADLs from the elderly
subjects. Each ADL that could possibly result in a fall (e.g.
sitting in a chair, lying on a bed, reclining) was counted as
one possible false fall event. A total of 27 ADLs that could
be construed as a fall were present for each elderly subject,
resulting in a total of 405 events that could have triggered a

false fall detection. There were no false detections in any of
the elderly subjects, resulting in a specificity of 100%.

IV. CONCLUSIONS

In this study, we have demonstrated that a small wireless
patch sensor allows for robust acquisition, recording, and
transmission of a number of important vital sign and activity
measurements. These measurements are of comparable accu-
racy to those made by traditional, larger medical devices. All
three tested locations demonstrated accurate measurement of
many physiological and activity parameters. The unobtrusive
form-factor enables continuous monitoring of heart rate and
HRV, while the accelerometer facilitates detection of posture,
steps, and falls. Fusion of both ECG-derived features and ac-
celerometry provides an accurate measurement of respiratory
rate. It may be possible to apply this type of sensor fusion
to the measurement of other types of health and activity
information such as energy expenditure, psychological stress,
and sleep-related information.

The advancing age of the world population makes remote
monitoring an important technology for preventive care and
rapid response to critical events. The minimalist form-factor
of the patch design enables long-term, unobtrusive wear of
such a sensor, and the rapid expansion of wireless connectiv-
ity over the last several years makes possible the continuous,
real-time streaming of important health information to care-
givers or healthcare professionals. Finally, while a wireless
patch device like the one described here facilitates long-
term remote monitoring of important vital signs and activity
metrics, it is important to note that such a device must be
easy to use if it is to be widely adopted and useful.
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