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Abstract— Automated segmentation of cell nuclei in mi-
croscopic images is critical to high throughput analysis of
the ever increasing amount of data. Although cell nuclei
are generally visually distinguishable for human, automated
segmentation faces challenges when there is significant intensity
inhomogeneity among cell nuclei or in the background. In
this paper, we propose an effective method for automated
cell nucleus segmentation using a three-step approach. It first
obtains an initial segmentation by extracting salient regions in
the image, then reduces false positives using inter-region feature
discrimination, and finally refines the boundary of the cell
nuclei using intra-region contrast information. This method has
been evaluated on two publicly available datasets of fluorescence
microscopic images with 4009 cells, and has achieved superior
performance compared to popular state of the art methods
using established metrics.

I. INTRODUCTION

Microscopic image analysis is becoming an enabling tech-
nology for modern system-biology research, and cell nucleus
segmentation is often the first step in the pipeline. The cell
nuclei normally exhibit quite distinctive (higher) intensities
from the image background, and they are thus relatively
easy for visual identification. However, while many studies
have been performed for semi- or fully-automatic nucleus
segmentation, the segmentation performance still remains
unsatisfactory for more difficult images.

Such difficulties mainly arise from imaging artifacts that:
(1) noisy bright regions could appear in the image and could
be easily confused as cell nuclei and affect the segmentation
of other cell nuclei (e.g. first example in Fig. 1); and (2)
the background areas are inhomogeneous and could display
higher-than-normal intensities hence becoming harder to dif-
ferentiate from the adjacent cell nuclei (e.g. second example
in Fig. 1). Furthermore, the cell nuclei also appear inho-
mogeneous that: (1) different cell nuclei could exhibit quite
different intensity ranges and hence a global classification
criteria might not work well; and (2) the pixels of a single
cell nucleus also show varying intensities and some could be
very similar to the surrounding background.

Among the numerous nucleus segmentation methods, the
morphological methods, such as Otsu thresholding and wa-
tershed [1], are widely popular and can be quite effective
in cases with good contrast between the cell nuclei and
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background. More advanced methods, especially those based
on level sets [2], [3], are also becoming a major trend for
boundary delineation with implicit contour modeling. An-
other category of methods is focused on pixel-wise labeling
accuracy, with various classification algorithms [4], [5], [6]
or graphical models [7], [8], [9], [10]. The classification-
based methods have the advantage that prior knowledge can
be utilized to guide the current segmentation; however, the
classification performance is often affected by low separa-
tion in the feature space due to image- or nucleus-specific
characteristics. The graphical models further incorporate the
structural information to enhance the adaptive capability of
the algorithm; however, without explicitly addressing the
imaging artifacts, such methods might not deliver good
performance for more difficult cases.

In this work, we propose an automatic region-based seg-
mentation method for cell nuclei. Considering cell nuclei
normally exhibit regular shapes with good intensity contrast
from the surrounding background, an initial segmentation is
first performed by extract hierarchical salient regions from
the image. Then to tackle the imaging artifacts of noisy bright
regions and lighter background areas, an inter-region feature
discrimination algorithm is designed to reduce the false pos-
itives (FP) based on region-level texture and reference-based
feature distance. Finally, to better localize the cell nuclei
based on the region hierarchy, a graphical model is designed
based on intra-region contrast information. Different from
classification approaches, the salient region extraction and
region-based discrimination are more adaptive to the specific
image or nucleus and are thus more effective in handling the
inhomogeneity of cell nuclei and background. And with the
localized areas generated from the initial segmentation and
FP reduction steps, it becomes possible to obtain accurate
pixel labeling using a relatively simple graphical model.

II. METHODS

Let I represent a microscopic image, which contains N
pixels I = {pn : n = 1, ..., N}. The objective is to
label each pixel pn as either foreground (i.e. cell nucleus)
or background. The labeling of a pixel pn is denoted as
ln = {F,B}, and a 3-step approach is designed as following.

A. Salient Region Extraction for Initial Segmentation

In this first step, we extract the salient regions from
image I based on the maximally stable extremal regions
(MSER) [11] algorithm. The MSER method detects regions
of regular shapes in hierarchies, with pixels on the region
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Fig. 1. Illustration of the proposed method flow with two examples. (a) The microscopic image (a quadrant of the original image). (b) Segmentation ground
truth indicated as orange contours. (c) Output of initial segmentation, with isolated dark gray areas indicating the single-level regions, and nested light and
dark gray areas indicating the top- and bottom-level regions. (d) Regions with green contours represent the reference regions used for FP reduction. (e)
Output of FP reduction, with white indicating the FP detected, and light gray indicating the confirmed nucleus regions. (f) Output of final cell localization.

boundary displaying lower intensities than all interior pixels.
It is similar to thresholding, but the intensity thresholds are
dynamically determined at region-level. The region boundary
is also related to level sets, but it does not require any
initial contours. Such properties render the MSER method
particularly suitable for quick localization of salient objects
(i.e. cell nuclei).

To avoid generating many small noisy regions, the image
is firstly smoothed using the anisotropic diffusion filtering
(ADF) [12], which also helps to preserve the edges. The
MSER algorithm is then performed [13] to extract a set of
salient regions {Rx} for an image I .

As shown in Fig. 1c, the extracted regions exhibit two
main characteristics. First, for cell nuclei with rather good
contrast from the surrounding background, the regions are
normally single-level (isolated dark gray regions) and depict
the actual nuclei quite closely. Second, for areas clustered
with cell nuclei and noisy bright objects (first example), a
two-level hierarchy of nested regions is formed, in which
the top-level (light gray regions) delineates the noisy bright
objects or the high-intensity portions of the cell nuclei,
and the bottom-level (dark gray regions surrounding the
light gray ones) encloses the cell nuclei and some adjacent
background with similar intensities. A two-level hierarchy
can be also seen in areas with elevated background intensities
(second example); and the top-level actually represents cell
nuclei while the bottom-level shows mainly the background.

B. Inter-Region Discrimination for FP Reduction

In the second step, false positive (FP) salient regions are
filtered out. As shown in Fig. 1e, the regions at the top-
or bottom-level could be FPs, and could appear quite bright
or dark. Therefore, filtering based on hierarchy or intensity
levels would not be robust. On the other hand, we observe
that the real nucleus regions tend to exhibit inhomogeneous
textural patterns, while the FP regions are more smooth
varying. Furthermore, although cell nuclei in different images
might display different features, those in the same image
and spatially near actually appear quite similar; while the
FP regions are more distinct from the other cell nuclei in

the same image. These two observations thus motivate us
to discriminate the nucleus and FP regions based on region-
level features describing the texture and within-image feature
distances.

Specifically, two types of features are computed for each
salient region Rx. First, texture features f1(Rx) based on
local binary patterns (LBP) [14] are computed as a histogram
of the LBP features lbp(pi) of all pixels {pi} in Rx:

f1(Rx) =
1

N(Rx)

N(Rx)∑
i

lbp(pi),∀pi ∈ Rx (1)

where N(Rx) is the number of pixels in Rx. The LBP
feature lbp(pi) is computed rotation-invariantly with radius
1 and 8 immediate neighbors. Since rotation invariant LBP
feature has 36 possible unique values (i.e. 0 to 35), lbp(pi) is
then represented as a 36-dimensional feature vector with the
corresponding element as 1 and the remaining 35 elements
as 0. The sum operation in Eq. (1) thus produces a 36-
dimensional histogram of LBP features of all pixels in Rx.
The feature vector f1(Rx) is then normalized by the size of
Rx to balance between regions. Here LBP is chosen for its
good feature descriptiveness and rotation-invariant property;
and only 8 immediate neighbors are used for its simplicity
and effectiveness based on our experiments.

Second, the feature distance f2(Rx) between Rx and
reference regions {Rx′} detected in the same image I is
computed:

f2(Rx) =
1

M

M∑
x′=1

‖f1(Rx)− f1(Rx′)‖2 (2)

Here a salient region is considered a reference region Rx′ if
(1) Rx′ is in the same image quadrant as Rx; and (2) Rx′

is a single-level region or at the top-level of the hierarchy.
And M is the number of reference regions {Rx′} present
for Rx. The example sets of {Rx′} are shown in Fig. 1d.
To better explain the idea, condition (1) ensures the spatial
adjacency of Rx′ and Rx, since it is observed that true cell
nuclei would exhibit similar textures if they are spatially near.
And we use image quadrant to constrain the spatial distance
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for its simplicity. Condition (2) is imposed since bottom-level
regions are usually part of the background, while Rx′ should
represent cell nuclei to be used as references for validating
Rx. Although some top-level regions could actually be bright
background, they are not identified at this stage and hence
cannot be reliably excluded. However, including such regions
into {Rx′} would only introduce minor noise with the
average operation in Eq. (2), since most reference regions
would be true cell nuclei.

Then, based on the feature vector f1(Rx)|f2(Rx), Rx is
classified as nucleus or FP region using a binary support
vector machine (SVM), with linear-kernel and other default
parameters [15]. Training is conducted on a small subset
(about 1/10) of the dataset. The example outputs of the FP
reduction can be seen in Fig. 1e. In this step, the single-level
regions (dark gray regions in Fig. 1e) are not processed, since
they normally represent true cell nuclei and skipping them
at this step helps to reduce the computational complexity.

C. Intra-Region Discrimination for Cell Localization

Lastly, the actual cell nuclei are better delineated from the
surrounding background. As shown in Fig. 1e, the salient
regions detected often contain a mixture of nuclei and
background, especially for those formulated in a two-level
hierarchy. Therefore, the objective here is to refine the pixel-
level labeling for salient and non-FP regions at the top- or
bottom-level of the hierarchy. The idea is that, the actual cell
nuclei, generally exhibit overall brighter intensities than the
surrounding background. To effectively segment foreground
from background, a graphical model based on intra-region
contrast information is thus designed for the labeling.

Given a salient region R that needs labeling refinement,
first, R is expanded using morphological dilation with a fixed
width (i.e. 20 pixels) from its contour to include the areas
outside of R. Such an expansion is necessary since the region
R itself might contain too little background to describe the
regional contrast information. For notation simplicity, the
expanded region is still denoted as R. A conditional random
field (CRF) [16] is then constructed for the labeling LR:

E(LR|R) =
∑
i

φ(li) + α
∑
i,j

ψ(li, lj) (3)

Here φ(li) represents the unary cost of pixel pi taking the
label li ∈ {F,B}, ψ(li, lj) is the pairwise cost between
neighboring pixels pi and pj encouraging spatially consistent
labeling for region R, and α = 0.1 is an empirical weight
factor.

To derive the unary cost φ(li), a k-means clustering is
first used to cluster the pixels in R into two clusters –
foreground and background. We observe that due to the
rather obvious contrast within a local context, such a simple
clustering approach is quite effective in differentiating these
two types of pixels. The probability of pixel pi representing
the foreground Pr(li = F ) is then computed as:

Pr(li = F ) = min{max{ Ii − IR,B

IR,F − IR,B
, 0}, 1} (4)

where Ii is the pixel intensity of pi, and IR,B and IR,F

are the cluster centroid of background and foreground in R.
And with the probability of pi representing the background as
Pr(li = B) = 1−Pr(li = F ), the unary cost is thus φ(li) =
1−Pr(li). The pairwise cost ψ(li, lj) is defined following the
usual Potts model based on the average intensity differences
between neighboring pixels.

Using graph cut [17], the energy function E(LR|R) is
then minimized efficiently to obtain the labeling set LR.
Example outputs of the final nuclei localization are shown
in Fig. 1f. Note that to reduce the computational complexity,
the labeling could be performed at superpixel level (e.g. with
mean-shift clustering), and similar results are observed.

III. RESULTS

The proposed method is evaluated on two publicly avail-
able sets of 2D fluorescence microscopic images of U2OS
and NIH3T3 cells [1]. The two datasets contain 48 and 49
grayscale images, with 1831 and 2178 annotated cell nuclei,
respectively. The second dataset (example images shown in
Fig. 1 and the second example in Fig. 2) is more challenging
than the first dataset (the first example in Fig. 2), with lower
contrast and larger intensity inhomogeneity.

To demonstrate the effectiveness of our method, we have
compared with four other methods: (1) Otsu thresholding;
(2) watershed; (3) level set with handling of intensity
inhomogeneity [18] with watershed outputs as the initial
contours; and (4) the state-of-the-art [2] reported for the
same datasets. For the convenience of comparison, the same
performance metrics used in [2] are used here, including the
Dice coefficient for pixel-level labeling, the normalized sum
of distances (NSD) and Hausdorff distance (HD) for contour
delineation, and the number of false positives (FP) and false
negatives (FN) for object-level detection. Except Dice, the
other four measures are the lower the better.

As shown in Table I and II, the proposed method exhibits
promising performance improvements over the compared
methods. Since dataset 1 is relatively easy with good con-
trast between foreground and background in most cases,
all methods achieve similar segmentation outputs. Dataset
2 is much more challenging with many bright background
regions and dark cell nuclei, the performance improvement
with our method is thus much more prominent. The main
contributor comes from the object-level accuracy – while
the compared methods tend to produce much higher FNs,
the proposed region-based approach manages to discover
more true cell nuclei with both low FPs and low FNs. In
particular, the salient region extraction is especially effective
in images with varying contrast. The inter-region feature-
based discrimination helps to reduce FPs caused by bright
background. The intra-region contrast-based localization fur-
ther refines the nucleus contour resulting in better the object-
level accuracy.

As shown in Fig. 2, the proposed method achieves better
segmentation in some typical cases. In the first example,
there are large intensity inhomogeneities within cell nuclei;
and the level-set method results in some under-segmentation.
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TABLE I
THE SEGMENTATION PERFORMANCE ON DATASET 1.

Dice NSD HD FP FN

Otsu 0.89 0.06 17.5 1.9 1.7
Watershed 0.94 0.03 11.2 1.4 6.1

[18] 0.93 0.02 9.6 2.5 0.7
[2] 0.94 0.06 13.3 0.5 3.9

Proposed 0.94 0.04 10.8 1.3 1.1

TABLE II
THE SEGMENTATION PERFORMANCE ON DATASET 2.

Dice NSD HD FP FN

Otsu 0.60 0.42 36.7 1.7 15.3
Watershed 0.78 0.34 47.7 1.8 10.3

[18] 0.80 0.21 25.0 2.2 4.2
[2] 0.83 0.14 16.5 1.7 11.3

Proposed 0.87 0.12 15.8 1.4 2.8

In the second example, due to higher background intensity
around the right side of the image, the level-set method
could not isolate the actual cell nuclei from the surrounding
background. Such results suggest that by modeling localized
contrast information, the region-based method can be indeed
more effective especially in cases with high inhomogeneities
in cell nuclei and background.

It is also worth mentioning that, similar to other pixel
labeling-based cell segmentation methods [5], [8], [9], the
proposed method does not model cell contours or handle
cell splitting. Therefore, cell nuclei that are spatially adjacent
or overlapping would merge as one region. However, this
study is mainly focused on pixel-wise labeling accuracy, and
besides the improved Dice values, the results also show good
contour-based measures (NSD and HD) suggesting good
approximation of the nucleus boundaries.

IV. CONCLUSIONS

In this work, we proposed a new approach for automatic
nucleus segmentation on microscopic images, to effectively

(a) (b) (c)

Fig. 2. Two example segmentation results. (a) Cell image with segmentation
ground truth delineated as orange contours. (b) Segmentation result using
the proposed method. (c) Segmentation result using level-set [18].

handle the intensity inhomogeneity among cell nuclei and
background. The proposed method is based on a region-
wise formulation, by first creating a hierarchy of salient
regions as the initial segmentation. Then based on the set of
regions, false positive regions including the noisy bright areas
and lighter background areas are filtered out with region-
level feature discrimination. The remaining regions in a two-
level hierarchy often need further labeling refinement, and a
graphical model based on intra-region contrast information
is thus designed for final localization. We have evaluated
the proposed method on two datasets with altogether 4009
annotated cell nuclei, and shown promising performance im-
provements over the classic and state-of-the-art approaches.
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