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Abstract— Image patch classification is an important task in
many different medical imaging applications. The classification
performance is usually highly dependent on the effectiveness
of image feature vectors. While many feature descriptors
have been proposed over the past years, they can be quite
complicated and domain-specific. Automatic feature learning
from image data has thus emerged as a different trend recently,
to capture the intrinsic image features without manual feature
design. In this paper, we propose to create multi-scale feature
extractors based on an unsupervised learning algorithm; and
obtain the image feature vectors by convolving the feature
extractors with the image patches. The auto-generated image
features are data-adaptive and highly descriptive. A simple
classification scheme is then used to classify the image patches.
The proposed method is generic in nature and can be applied
to different imaging domains. For evaluation, we perform
image patch classification to differentiate various lung tissue
patterns commonly seen in interstitial lung disease (ILD), and
demonstrate promising results.

I. INTRODUCTION

Image pattern classification has a wide range of applica-
tions in medical imaging, such as analysis of various lung
diseases [1], [2], [3], [4], [5], [6], [7], [8], [9]. Commonly
the classification task comprises of two main components:
1) image feature extraction and 2) feature classification.
Both components have been extensively studied over the
past years with increasingly good performance. Popular
feature extraction techniques include the more traditional
ones such as grayscale or color distributions, gray-level co-
occurrence matrix, Gabor filters and wavelets; and the more
recent feature descriptors such as the scale-invariant feature
transform (SIFT) [10], local binary patterns (LBP) [11], and
histogram of oriented gradients (HOG) [12].

Different from the manually crafted feature descriptors,
automatic feature learning has been recently proposed to
solve some challenging image classification problems [13],
[14]. They demonstrate good generalizability that could be
applied to different problems without major changes. Both
supervised and unsupervised machine learning algorithms
could automatically adapt to the training dataset, and extract
useful features for classification. Restricted Boltzmann Ma-
chine (RBM) [15], [16], an unsupervised learning algorithm,
is used widely to perform automatic feature learning from
various types of input. Unsupervised learning algorithms
can learn from unlabelled input, which is a great advantage
over supervised learning algorithms, as accurately labelled
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Fig. 1. Two example images (part of original CT slices) are shown for each
tissue category. (a) Normal. (b) Emphysema. (c) Ground glass. (d) Fibrosis.
(e) Micronodules.

training data is usually more expensive to prepare than
unlabelled data.

Our aim of this study is to classify different lung tissue
patterns depicting ILDs. ILD represents a group of more than
150 different disorders of the lung parenchyma [17]. They
cause scarring of the lung tissues and patients would develop
breathing difficulties. Identifying the specific type of ILD is
important for treatment, and the computed tomography (CT)
imaging is usually employed during the process. However,
due to individual differences between patients, even the
same type of ILD often displays different image patterns;
and hence interpreting the images is quite a challenging
task for physicians. A computed-aided system for automatic
classification of the tissue patterns is thus very helpful for
the clinical practice, and has been studied recently focusing
on customized feature design [3], [7].

The main difficulty in accurate classification of lung tissue
patterns is the high intra-class feature variation and low inter-
class feature distinction. For example, as shown in Fig. 1,
within each tissue category, there are considerable feature
variations. And for different categories, such as the ground
glass and fibrosis, the images often look rather similar.
Therefore, it is quite challenging to design a representative
and discriminative feature set to effectively group fairly dif-
ferent images into the same tissue category and differentiate
between similar images of different categories.

In this work, we propose a new image patch classification
method based on fully automatic feature learning. Rather
than defining a set of features manually, we design a unsu-
pervised learning approach to construct multi-scale feature
extractors, and such extractors are convolved with the image
patches to obtain feature vectors. Compared to using existing
popular feature descriptors [2], the features generated with
the proposed method are more data-adaptive with automatic
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exploration of the intrinsic image characteristics. Also differ-
ent from customized problem-specific features [7], it avoids
the empirical nature of feature design, and can be easily
adapted to any other imaging domains. The extracted patch-
wise features are then classified using a standard supervised
classifier to derive the tissue categories of the image patches.

II. METHODS

First, to capture image features of different scales, feature
extractors of different sizes are learned using unsupervised
algorithm (Section II-A). Next, each image patch is convo-
luted with the learned feature extractors to obtain a group of
feature maps; and sum of all pixel values in feature maps of
one image patch is used as the feature vector (Section II-B).
The patch-wise feature vector is then classified into one of
the five tissue categories (Section II-C).

A. Extractor Learning

RBM is a stochastic and generative neural network that is
capable of capturing and reproducing the statistical structure
of a given dataset [18]. The RBM method and its variants
have been proven effective in learning filters, i.e. feature ex-
tractors, from natural images for classification and generation
tasks. In this article, we use Gaussian RBM (GRBM) [13],
[16] to learn a model that could represent patches from lung
images. GRBM is chosen, because it is capable to model real
value input like natural images.

GRBM consists two layers of neuron nodes, the visible
layer and the hidden layer. The nodes in visible layer and
hidden layer are connected by undirected weight matrix.
Each node also has a bias value associated. An energy
function of the network is defined as:

E(v, h) =

nv∑
i=1

(vi − ai)2

2σ2
i

−
nh∑
j=1

bjhj −
nv∑
i=1

nh∑
j=1

Wijhj
vi
σi

(1)
where vi and hj are values of visible and hidden neurons
respectively. ai and bj are biases corresponding to visible
and hidden neurons. Wij is the weight matrix connecting
visible and hidden neurons, and σi is the standard deviation
of the visible neuron vi

The probability of a visible state given a hidden state is
as:

p(v, h) =
1

Z
exp−E(v,h) (2)

where Z is the partition function that accumulates over all
possible visible and hidden states:

Z =
∑
v,h

exp−E(v,h) (3)

The probability of the network assigned to a visible state is
given by summing over all possible hidden states:

p(v) =
1

Z

∑
h

exp−E(v,h) (4)

The goal of the training process is to increase the proba-
bility of the visible state p(v) by adjusting the weights and
biases. In other words, the network learns the pattern of the
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Fig. 2. Feature extractors learned from various input size. (a)16 filers from
5× 5 patch. (b)16 filers from 8× 8 patch. (c)16 filers from 10× 10 patch.

dataset based on training samples. The contrastive divergence
algorithm [19], [20] is used to derive a set of weight and
bias configurations so that the probabilities assigned to the
training images are raised. And the derived weight matrices
of the GRBM networks are thus the feature extractors.

The size of lung image patch to be classified is 32 × 32
pixels. However unlike human face or hand written char-
acters, there is no obvious structure on 32 × 32 patches
of lung image. Therefore, instead of training the networks
using 32 × 32 patches as inputs, we use smaller patches to
capture features of the finer structures within the 32 × 32
patches. And instead of using single-scale patches, it is
intuitive to consider a multi-scale approach to represent
image features at different resolutions. Three networks are
thus trained using random sampled input patches of size 5×5,
8× 8 and 10× 10 respectively. This generates a multi-scale
network capturing features of different sizes. The training
patch sizes are chosen based on experimental results. All
networks are configured with 16 hidden neurons. We choose
such a small size of hidden neuron number to avoid over-
fitting problem during GRBM training and the subsequent
training for classifiers. The feature extractors learned from
the contrastive divergence training process can be visualized
in Fig. 2.

B. Convolutional Feature Extraction

With the feature extractors generated using the above
unsupervised learning algorithm, an image patch is then
transformed into a feature vector in the following way.

First, let X represent an image patch with P pixels xp:
X = {xp : p = 1, ..., P}, and F s,n represent a feature
extractor of scale s and index of hidden neuron n. A group of
S ×N feature maps {Ms,n(X) : s = 1, .., S, n = 1, ..., N}
are then created for image patch X by convolving it with the
set of feature extractors {F s,n : s = 1, .., S, n = 1, ..., N}:

Ms,n(X) = X ∗ F s,n (5)

Then, a feature element gs,n(X) is computed by summing
all values in one feature map:

gs,n(X) =
∑
k

Ms,n
k (X),∀Ms,n

k (X) ∈Ms,n(X) (6)
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Fig. 3. Illustration of the proposed feature vector computation. Three
groups of feature extractors of different sizes are convolved with the 32×32
input patch, to produce 48 feature maps. Sum of pixel values in each feature
map is used as a feature element. The concatenation of all feature elements
as a 48-dimensional feature vector is used for SVM classification.

where Ms,n
k (X) denotes a value in the feature map

Ms,n(X). The concatenation of all feature elements gs,n(X)
is thus the feature vector of image patch X:

G(X) = {g1,1(X), ..., gS,N (X)} (7)

and the feature vector G(X) is of S ×N dimensions.
In this study, since we have a three-scale GRBM network

each with 16 hidden neurons, i.e. S = 3 and N = 16, the
feature dimension is thus 3 × 16 = 48. This is independent
of the image patch size, which is set to 32 × 32 following
the convention used in [7]. The feature dimension is also
considered quite small, compared to the popular hand-crafted
feature descriptors such as SIFT and LBP. The process
of feature extraction based on learned feature extractors is
visualized in Fig. 3.

C. Classification

The image patch X is finally classified into one of the five
tissue categories based on its feature vector G(X). A linear-
kernel support vector machine (SVM) is applied for effective
classification using the LIBSVM package [21]. The training
is conducted following the leave-one-subject-out scheme.
Therefore, no patches from the same subject are used during
training to avoid over-fitting for the testing patches.

III. EXPERIMENTAL RESULTS

A. Datasets

The publicly available database of ILD cases [22] is
used in this study. The database contains 113 sets of high-
resolution CT (HRCT) images. Each slice contains 512×512
pixels. A set of 2062 2D regions of interest (ROIs) are also
provided, each with its tissue type annotated. Among the
total 16 abnormal tissue patterns, four of them are commonly

TABLE I
SUMMARY OF THE DATASET USED.

Tissue type # Images # Patches
Normal (N) 14 4348

Emphysema (E) 9 1047
Ground glass (G) 29 1953

Fibrosis (F) 37 2591
Micronodule (M) 18 6281

seen in ILD patients, and have been mostly studied in the
past [22]: emphysema (E), ground glass (G), fibrosis (F) and
micronodules (M). Together with the normal tissue (N), the
method is thus expected to classify five tissue types.

The images are divided into half-overlapping image
patches of 32 × 32 pixels. An image patch with less than
75% of its pixels falling inside of an annotated ROI is filtered
out from the experiment; and the patch-wise classification
performance is evaluated for all the valid patches [7]. The
experiment is thus performed on 92 HRCT image sets with
a total of 16220 image patches. The numbers of images and
patches of each tissue type are summarized in Table I. Note
that one image set might contain multiple tissue types, hence
the sum of images is larger than the actual number of images
used for experiment.

B. Classification Results

The classification results using the proposed method are
shown in Table II. Good classification accuracy of 84% is
obtained on micronodules. The results also show that there
are relatively large degree of confusions between normal and
emphysema types, and between ground glass and fibrosis
types. Such confusions are likely due to high level of
similarity between the two pairs of tissue patterns, as can
be seen from Fig. 1.

The parameter settings in this study, mainly the variable
patch sizes used in the multi-scale GRBM network, are then
evaluated. It is found that by using only a single-scale net-
work, the learned feature vector is most discriminative with
5× 5 input patches for extractor learning. By incorporating
a multi-scale design, the classification performance further
improves by about 3% recall and 4% precision. The results
suggest that using features learnt and extracted from different
scales helps to improve classification performance. It is also
worth mentioning that while such parameters are empirical
to the problem domain, the proposed feature learning method
is general to other imaging applications and the parameters
would be easily tuned.

We then compare the proposed learned feature vector with
several popular feature descriptors, including (i) grayscale
histogram with 64 bins (Hist); (ii) LBP with 3 resolutions and
rotation invariance; (iii) HOG with 9 orientations and 4 cells;
(iv) SIFT with keypoint placing at the center of the patch; and
(v) concatenation of these four descriptors (H+L+H+S). For
each descriptor (i)–(iv), the required parameters are chosen
empirically to achieve the best feature discriminative power,
and polynomial-kernel SVM is found most suitable. As
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TABLE II
THE CONFUSION MATRIX OF TISSUE PATTERN CLASSIFICATION.

Ground Prediction
Truth N E G F M

N 0.76 0.15 0.03 0.03 0.04
E 0.26 0.67 0 0.07 0.00
G 0.04 0.02 0.70 0.12 0.11
F 0.05 0.03 0.10 0.74 0.08
M 0.01 0.01 0.05 0.10 0.84

Fig. 4. The classification recall comparing various feature descriptors.

shown in Fig. 4 and 5, the proposed feature vector achieves
higher classification recall and precision than the compared
descriptors. It is especially encouraging that while H+L+H+S
involves combination of different and complementary types
of feature descriptors, the proposed learning approach de-
livers higher performance. Such an approach thus avoids
the empirical nature of feature design that is commonly
employed, yet is able to discover the intrinsic image features
useful for classification.

IV. CONCLUSIONS

In this work, we have designed an image patch classi-
fication method based on fully automatic feature learning.
With a multi-scale GRBM network, feature extractors of
different scales are learned from raw image patches. Then
the learned feature extractors are convoluted with image
patches to produce the feature vectors for SVM classification.
The test results on ILD HRCT lung images show that the
proposed method was effective in automatic extraction of

Fig. 5. The classification precision comparing various feature descriptors.

high quality image features for lung disease classification
task; and higher classification performance was observed
comparing to various feature descriptors that are currently
widely popular in many imaging applications.
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