
  

 

Figure 1.  The framework of the liver surgery planning system 
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Abstract—Liver surgery planning system plays an important 

role in achieving the optimized surgery plan in Living Donor 

Liver Transplantation (LDLT). Segmentation of liver is a very 

challenging component in liver surgery planning systems. 

Patient-specific shape prior is of great significance in improving 

the robustness of liver segmentation. However, complex liver 

shape variations among different patients are difficult to model, 

which affects the accurate segmentation in liver surgery 

planning. To address this problem, we incorporated the Sparse 

Shape Composition (SSC) in the computer assisted liver surgery 

planning system. The basic modules of the system consist of: (1) 

Segmentation module. The Sparse Shape Composition (SSC) 

model is employed to get a patient-specific liver shape prior and 

then the shape prior is combined with a minimally supervised 

method to segment the liver parenchyma, hepatic vessels and 

tumors simultaneously. (2) Approximation of liver segments. It 

divides the liver into several functionally independent segments. 

(3) Visualization module. The result of clinical experiment shows 

this system has a good performance in providing accurate and 

robust liver surgery planning. 

I. INTRODUCTION 

Liver cancer has become one of the most life-threatening 
diseases throughout the world. For a quite large number of 
patients with end-stage liver cancer, the most efficient 
treatment is liver resection or living donor liver 
transplantation (LDLT)[1]. In the process of the LDLT, a 
portion of the healthy liver of the donor is cut off and it is used 
to replace a part of or the entire liver of the recipient. To 
achieve the best surgery strategy, surgeons must accurately 
calculate the volume of the liver portion that would be cut off 
before surgery. They also need to locate the liver portion and 
the distribution of intrahepatic vessels and tumors during the 
implementation of the surgery[2]. To accomplish these tasks, 
computer assisted liver surgery planning system is greatly 
helpful[3]. 

Many researchers have been making efforts to develop 

computer assisted planning system for liver surgery [4-6]. The 

architecture of the prototype of liver surgery planning systems 

is shown in Fig. 1. The system takes 3D abdominal image data 

as input and then segments the liver parenchyma, tumors and 
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intrahepatic vasculatures including portal veins and hepatic 

veins. Afterwards liver can be divided into several segments 

that usually conform to the Couinaud liver model according to 

the vessel trees[7]. Finally a resection proposal is calculated 

based on the result of foregoing steps and all the liver 

components are visualized to help the preoperative planning 

and intraoperative guiding. 
The accurate segmentation of liver parenchyma, tumors 

and intrahepatic vasculatures is the prerequisite for liver 
surgery planning, since a resection approach requires very 
accurate and detailed knowledge about the structures of the 
vascular system and the relative position between tumor and 
hepatic vessels. However, an excellent performance of the 
segmentation is hard to achieve because of the artifacts in 
abdominal images such as noise, partial volume effect and 
weak boundary information between different organs. In the 
past decades, a variety of efforts have been made in the field of 
liver image segmentation[8, 9]. It is shown that methods 
taking into account the shape prior  knowledge could often 
achieve better performance than those solely rely on the 
appearance cue in liver segmentation [10]. 

Shape prior of liver is employed in the segmentation 
method in our system to get more accurate segmentation 
results. Adjoining abdominal organs such as liver, spleen and 
stomach might have similar gray levels, thus traditional 
methods such as region growing could easily lead to 
over-segmentation and under-segmentation. Shape-based 
models could effectively address this problem by providing a 
prior region of the liver. However, currently proposed liver 
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surgery planning systems rarely take full advantage of shape 
priors, mainly because it is challenging to modeling the 
complex variations among different patients. The most widely 
used shape prior model is the Statistical Shape Model[11], in 
which a number of training shapes are required to capture all 
the possible shapes with robustness to noise and outlier. In our 
system, a sparse learning method proposed by Zhang et al. 
[12, 13] is employed to infer the shape prior of the liver. 
Afterwards, the shape prior is used as a constraint in the 
following accurate segmentation process. The segmentation 
method is a minimally supervised iterative classification 
approach that segments several tissues such as hepatic 
parenchyma, tumor, portal veins and hepatic veins 
simultaneously, with its ability to overcome the overlap of 
gray levels between these tissue classes. The liver shape prior 
is employed to get a more accurate segmentation result of 
hepatic parenchyma, which influences the segmentation of 
tumors and intrahepatic vessels. 

In this study, we present our work on the implementation 
of the liver surgery planning system. We mainly focus on the 
two fundamental modules: one is the segmentation of hepatic 
parenchyma, tumors and intrahepatic vessels from clinical 
computed tomography (CT) scans, and the other is the liver 
segment approximation method. The most important 
contribution of this paper is addressing the complex liver 
shape variations from clinical patients by employing SSC 
model, which ensures the accuracy and robustness of the 
segmentation in liver surgery planning systems. 

II. METHODLOGY 

A. Shape Prior Based on Sparse Representation 

Sparse Shape Composition (SSC) model represents the 
shape prior by a sparse linear combination of shapes in the 
shape repository. In our liver surgery planning system, the 
SSC model is employed mainly because of the following 
challenges in the modeling of shape prior for liver. First, liver 
shapes from different patients have such a complex variation 
that a parametric probability distribution is not accurate 
enough to describe the variation. The SSC model addresses 
this problem without any assumption of parametric 
distribution models. Second, patient adaption of the shape 
prior is a critical consideration. The SSC model can preserve 
local details of the input shape as long as such details appear in 
the training data, thus it is adaptive to different patients. Third, 
for those a part of whose liver has been resected previously, 
the integrated liver could not be found in the CT scan so that a 
common surgery planning system could just provide the 
visualization of the remained part of the liver. However, the 
SSC model is able to infer the integrated liver benefited from 
its robustness against outliers, which assists surgeons in 
making a better understanding of the whole liver. 

In our surgery planning system, a liver shape repository is 
constructed in advance. All the liver shapes in the repository 
are manually segmented by experienced experts and 
converted to meshes for shape modeling. For a certain patient, 
an initial liver segmentation based on simple region growing 
method is rapidly performed. The initial segmentation result is 
also converted to mesh and registered to shapes in the 
repository. The newly generated mesh serves as input of the 

SSC model and is approximated by an optimized sparse linear 
combination of a subset of the shape repository. The initial 
segmentation result may contain gross errors but such errors 
are sparse, which can be captured by SSC. The output of the 
SSC model is accepted as the prior liver shape for the patient, 
and it is employed as a constraint in the following accurate 
segmentation of hepatic parenchyma, tumors and intrahepatic 
vessels. The details of the SSC is described in [13] . 

B. Accurate Segmentation 

A minimally supervised classification method[14] that 
uses both statistical and spatial information is employed to 
segment several tissues in the liver region including hepatic 
parenchyma, portal veins, hepatic veins and tumors. It was 
originally proposed for 2D head image segmentation but it can 
be extended to 3D liver image segmentation easily. In addition, 
we incorporate the SSC shape prior into this classification 
method in our liver surgery planning system. 

This accurate segmentation method is an iterative 
classification approach adapted from Bayesian Level Set 
method[15]. It can be described as a process of the growing of 
high-confidence (HC) points of each tissue. HC points are 
points with the least chance to be misclassified for each tissue 
class. In the first iteration, HC points are selected from the 
result of Bayesian classification based on thresholds of 
statistical intensity and the size of connected domain of each 
tissue class.  

In the subsequent iterations, the Fast Marching 
Method[16] is used to compute the arrival time of the surface 
of HC points blobs of one certain tissue class when it marches 
to every unclassified point. The marching speed at each 
unclassified point is defined based on its intensity and the 
spatial relationship between that point and the liver shape 
prior, i.e. for one certain tissue class, the larger the difference 
between the intensity of the unclassified point and the average 
intensity of HC points, or the larger spatial distance between 
that point and the liver shape prior, the slower the marching 
speed at that point. After the marching process, arrival time 
could be computed and it indicates an intensity and prior 
knowledge weighted distance instead of the Euclidean 
distance. We classify each point into the tissue class with the 
least arrival time at that point. In the next step, new HC points 
are selected for each tissue class and new iteration begins. The 
iteration will terminate when the percentage of increase in the 
volume of hepatic parenchyma is below a threshold. After the 
iteration converges, the accurate segmentation result of liver 
parenchyma, portal veins, hepatic veins and tumors could be 
accomplished simultaneously.  

C. Liver Segment Approximation Module 

Liver could be partitioned into several regions based on 
the intrahepatic vascular system. The mostly used partitioning 
proposed by Couinaud et al. [7] divides liver into eight 
segments according to the third order branch of portal veins, 
and these segments could be used as ablation units in liver 
surgery. In the liver surgery planning system, visualization of 
the anatomical liver segments and their relationship to tumors 
is also very important, since the surgical strategy depends on 
the anatomical information of the related liver segment and 
vasculature. Besides, volumetry of the whole liver and each 
segment is necessary for the analysis of liver’s function. 
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(a)                                        (b) 

  
(c)                                        (d) 

Figure 2. The initial segmentation results of two livers (a, c) and their 

corresponding shape priors (b, d). In (a), the tumor region is under 

segmented. However, the result of SSC restores that region, as shown in (b). 

In (c), over-segmentation occurs with the right kidney being included. The 

result of SSC excludes the kidney, as shown in (d). 

  
(a)                                        (b) 

Figure 3.  Accurate segmentation of hepatic parenchyma, portal veins and 

hepatic veins. (a) High confidence points of hepatic parenchyma (yellow 

color), portal veins (green color), hepatic veins (blue color) and liver shape 

prior (red curve) in the first iteration. (b) Segmentation result of hepatic 

parenchyma (yellow color), portal veins (green color), hepatic veins (blue 

color) and liver shape prior (red curve). 

 

The liver segment approximation module is used to provide 
the knowledge of the shape and volume of the patient’s 
individual liver segments to estimate the risks of different 
resection strategies. In our system, an interactive method 
based on the topological and geometrical structure of portal 
veins is used. In the first step, users label primary branches for 
each segment according to the anatomical structure of portal 
veins, and then sub-branches and terminals for each branch 
could be automatically labeled. In the following, the Nearest 
Neighbor Segment Approximation (NNSA) approach[9] is 
employed. This method classifies each liver voxel into the 
segment with the lowest Euclidean distance from its defining 
portal branches. Finally, each voxel of the liver will be 
classified into one certain segment.  

D. Visualization Module 

Visualization is an essential module to present the 
segmentation results of hepatic parenchyma, intrahepatic 
vessels, tumors and the results of liver segment approximation. 
It provides an intuitive knowledge of the structure and relative 
position between different tissues both in preoperative 
planning and intraoperative guiding process. The 
Visualization Toolkit (VTK)[17] is a widely used software 
system for 3D data visualization. In this module, we mainly 
use marching-cubes based surface rendering method[18] to 
accomplish the visualization of different tissues.  

III. RESULTS 

Clinical abdominal image data of enhanced CT was used in 
the experiments. We collected manual segmentation results of 
livers from 42 healthy persons to construct the shape 
repository and implemented the segmentation algorithm on 8 

patients with liver cancer. The image resolution is 512×512 

and the pixel spacing is 0.682mm×0.682mm.  

In the liver surgery application, under-segmentation of 
tumors and over-segmentation of kidney and others tissues are 
gross errors. However, they could be captured effectively by 
the SSC model. Fig. 2 shows the initial liver segmentation 
results and the output liver shape priors of two patients. In (a), 
tumor appears in the CT image of the patient. Since the gray 
level of tumor is obviously lower than that of normal liver, the 
region growing method fails to extract the tumor region, 
which leads to under-segmentation. However, the result of 
sparse shape representation restores the tumor region as 
shown in (b), so that the tumor is preserved in the 
segmentation result. (c) and (d) show another example. In this 
case, the region growing method extracts the liver together 
with the right kidney, as is shown in (c). The initial 
segmentation result is refined by the SSC model and the 
output shape prior excludes the kidney. The output shape prior 
is shown in (d).  

Fig. 3 shows the HC points and segmentation result of 
hepatic parenchyma, portal veins and hepatic veins under the 
consideration of SSC shape prior. The shape prior is 
patient-specific and it exactly approximates the liver region, 
with adjoining organs such as kidney being excluded. We 
evaluated the segmentation algorithm in terms of sensitivity 
and specificity. The average sensitivity and specificity value 
of four tissues from the 8 patients are shown in Table I. As a 
result, high accuracy of the segmentation of hepatic 
parenchyma is achieved, which also ensures vessels outside 
the liver region will not be over-segmented.  

Fig. 4 shows the segmentation result for a patient with liver 
tumor. The opacity of liver segments, intrahepatic vessels and 
tumors are set to less than 1.0 so that a semitransparent effect 
is achieved. To make an accurate surgery planning, high level 
branching structure of portal veins and hepatic veins should be 
remained in the segmentation result. As is shown in Fig. 4, the 
fourth-order and higher vessel branches are extracted by our 

TABLE I. SENSITIVITY AND SPECIFICITY OF THE RESULTS 

 Hepatic 

parenchyma 

Portal 

veins 

Hepatic 

veins 
Tumor 

Sensitivity 0.902 0.878 0.925 0.896 

Specificity 0.961 0.983 0.994 0.987 
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proposed segmentation method, with tumor being segmented 
at the same time, so that the accuracy of the surgery planning 
is ensured. 

The result of the liver segment approximation is illustrated 
in Fig. 5. (a) shows the portal veins which are divided into 
eight sub-branches and each sub-branch supplies an 
independent liver segment. (b) shows the liver segments 
approximated by NNSA based on  the  labeled portal veins in 
(a). The color of each liver segment is the same as that of the 
corresponding portal vein’s sub-branch. The volume of each 
segment could be measured easily, which can provide 
quantitative measurement of the liver. Thus, functional 
analysis of the liver can be performed. 

IV. DISCUSSIONS AND CONCLUSIONS 

A liver surgery planning system is introduced in this paper. 
It implements an accurate segmentation of hepatic 
parenchyma, portal veins, hepatic veins and tumors. The 
segmentation result is visualized to provide detailed structure 
and position information of the vascular system and tumors. 
The volume of liver segments could be calculated and 
analyzed based on liver segment approximation, so that 
surgeons can make an optimized surgery plan in LDLT. 

The segmentation module in this system is mainly 
discussed. To achieve more stable and accurate segmentation 
result of hepatic parenchyma and intrahepatic vessels, a shape 
prior method based on SSC model is applied. The SSC model 
is effective in modeling complex variations of liver shapes. 
The local details of the input shape could be preserved by SSC 
so the shape prior is adaptive to different patients. The liver 

shape prior is incorporated with a minimally supervised 
algorithm in our system and hepatic parenchyma, portal veins, 
hepatic veins and tumors could be segmented simultaneously 
in a unified framework. 

 The main advantage of our system is the application of 
SSC to improve the accuracy and robustness of the liver 
surgery plan, which deals with complex shape variations 
among patients with liver cancer in clinic environment to 
ensure the safety of liver resection and the least waste of liver 
segment of the donor and recipient. Experiments have shown 
that the system has a good performance in the segmentation of 
liver, tumor and vessels, and the result is accurate and robust 
enough for the planning of liver surgery. Our future works will 
include more experiments on clinical data and improving the 
stability and efficiency of the system. 
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Figure 4.  Visualization of the segmentation result of hepatic parenchyma, 

portal veins, hepatic veins and tumor. 

  
(a)                                        (b) 

Figure 5.  Result of the liver segment approximation. (a) Portal veins 

labeled in different colors. (b) Liver segments approximated by NNSA 

based on the labeled portal veins. 
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