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Abstract—The separation of a lung tumor from adjacent normal 

tissue, which has similar intensity values and indistinct 

boundaries on low-contrast CT images is a challenging task. In 

this paper, a prior knowledge enhanced random walk (RW) is 

proposed to account for the prior functional knowledge from 

PET and intensity information from CT. The prior knowledge 

acquired from PET is used for the automated selection of 

foreground seeds, defined as the tumor confidence region, the 

background seeds and the walking range to increase 

computational efficiency of the RW algorithm in CT. The tumor 

confidence region is also used for balancing transition, and thus 

limiting the information propagation range through a weight 

factor. The experimental evaluation on 18 low-contrast CT 

images with manual tumor segmentation demonstrated that our 

method outperformed RW and random walk from restart 

(RWR) as measured by the Dice similarity coefficient (DSC). 

I. INTRODUCTION 

Lung cancer is a common cause of death and despite 
improvements in many aspects of modern medical care, the  
five-year survival rate remains poor at around 15% over the 
last few decades [1]. Early diagnosis, accurate staging and 
effective treatment of lung cancer are critical in improving 
survival. It has been suggested that if small non-small cell 
lung cancers (NSCLCs) can be removed prior to regional and 
more widespread dissemination the 5-year survival rate could 
be increased to approximately 80% [2]. 

Combined PET-CT scanners are now widely used in lung 
tumor diagnosis and treatment because they provide 
complementary functional information and anatomical 
information from a single scanning session. When 
radiotherapy is considered for treatment it is vital to delineate 
the tumor margins by segmentation to minimize damage to 
healthy tissues. Since CT provides better anatomical 
information and higher resolution than PET, tumor 
segmentation and delineation is mostly based on CT. 
However, to segment a tumor when it abuts or involves 
adjacent structures such as mediastinum and chest wall where 
there are similar intensities remains a challenging problem. 
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Most lung tumors have high uptake of 
18F-fluoro-deoxy-glucose (

18
FDG), the most common PET 

tracer used in clinical medicine and characteristic is used to 
identify the tumors and their sites of spread. Recent work on 
PET lung tumor segmentation emphasized a fuzzy locally 
adaptive Bayesian algorithm [3] for heterogeneous tumor 
distribution [4] but there was no attention to tumor separation. 
In our previous work, a tumor-customized downhill (TCD) 
method was effective in the delineation and separation of 
tumors from adjacent neighbors with similar densities [5]. 
The segmentation accuracy was further improved by 
incorporating the standard uptake value (SUV) downhill 
feature into the energy function of graph cuts [6]. Other graph 
based methods including the random walk (RW) have been 
used for PET lung tumor segmentation [7].  

Random walk has attracted increasing research attention 
due to its ability to segmenting an object with weak or 
indistinct boundaries [8]. Grady et al reported that RW was 
promising for the segmentation of lung tumors [9]; Chen et al 
[10] suggested that it was useful for malignant pleural 
mesothelioma from CT images. However, the segmentation 
results in RW are affected by the number and location of 
seeds. In addition, as Kim et al [11] indicate, RW only 
considers the local relationship between an un-labeled pixel 
and the border of the pre-labeled region, thus useful 
information of  seeds inside the region is ignored. To solve 
this problem, Kim et al proposed random walk with restart 
(RWR) [11]; the RWR takes into account the 
across-the-board relationship between pixels and all possible 
paths between two nodes. These investigators reported that 
the RWR segmentation accuracy was improved by this 
approach.  

The current RW-based segmentation mostly depends on 
interactive input of seeds, and works on a single image 
modality without helpful prior knowledge to improve the 
segmentation accuracy. In this paper we present a prior 
knowledge enhanced RWR method for lung tumor 
segmentation from CT that takes into account the enhanced 
confidence in tumor location provided by PET and the 
relatively clear boundary information from CT.  

II. METHODS 

A. Problem definition and hypothesis 

For a given image  1 , ,i nI x x x  and seed set 

1( , , )k mL L L L , the aim of segmentation is to group 

each unlabeled pixel ix I  to kL . The segmentation task can 

be solved by calculating the probability for each pixel to 
decide its membership. 
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While RWR [10] provides an effective solution to the 
probabilistic problem, our hypothesis is that the prior 
knowledge, such as the tumor confidence region extracted 
from PET, would help on deciding a pixel’s membership, and 
hence would improve segmentation accuracy. 

B. Related work 

1) Random walk for image segmentation:  

Given an image I , a weighted graph ( , )G V E  is 

defined with 
i iv x , and the edges in set E  are weighted 

according to weighted matrix W  with 

entries
2

exp( )ij i jw g g    . The state ( )t

li  of a walker 

starting from a labeled pixel 
lx  and arrives at 

ix  after t  

steps can be formulated as equation (1) 

 
( ) ( 1)( ) (1 )

j

t t

li li ji

x

i l p          (1) 

where ( ) 1rel   when rel  is true and 0 otherwise. This 

means that when arriving at each pixel, if the pixel is labeled, 

the walker will go back to the starting seed 
lx  with a restart 

probability  , otherwise with the probability 1  , the 

walker selects a neighbor pixel 
jx  with probability 

ijp  and 

moves to its neighbor. It is clear that if   increases, the 

probability that a random walker travels over a larger area 

decreases. With ( ) ( )t t

li
li

   Π , Equation (1) can be 

formulated as 
( ) ( 1)(1 )t t    Π I Π P , where P  is the 

transition matrix defined as 
( )

ij ij i

E i

P w w 


  . 

As random walk on edge-weighted graphs is a special case of 
Markov chain and at the steady state of the 

system ( ) ( 1) (0)t t t   Π Π P Π P , thus  

 
1( (1 ) )    Π I P  (2) 

Finally the probability of pixel 
ix belonging to label set 

kL  can be obtained by [ ]k

i kiB  Π , where B  is defined as 

equation (3), 
kQ  is the set of seeds with label 

kL . 

  

1
,  if ( )

  0,     otherwise

i k

kki

label x L
QB




 

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 (3) 

2) Tumor-customized downhill for lung tumor 

segmentation from PET:  

The Tumor-customized downhill (TCD) segmentation [5] 
starts from a voxel with SUVmax within the tumor region. 
During the irritation process, for each labeled voxel

jv , its 

neighboring voxels 
iv  are evaluated and labeled according to 

equation (4) 

 
1,  ( ) ( ) & ( ) ( )

0,  otherwisei

i j i i

v

SUV v SUV v nGM v v
l

 
 


 (4) 

where 2

2 1

1
( ) ( ( ))i iv x nSUV v

x x
  


 is the stopping 

criterion function. The two control points 

 1 min | ( ) 0i ix x x   and  1 min | ( ) 0i ix x x  are 

estimated based on the relationship of pairs of normalized 
SUV (nSUV) and normalized GM (nGM) using a second 

degree polynomial regression function ( )x .  

C. Prior knowledge enhanced RW 

The overview of our proposed method is shown in Figure 
1. The first step is to acquire the prior knowledge from the 
input PET images. After detecting the tumor confidence 
region, background seeds and the walking range on PET, the 
information is mapped back to the corresponding CT. Then 
the graph is modeled on CT to get the essential matrices for 
the computation of the steady-state probabilities for each 
pixel. Finally, the probability map and output tumor contour 
are obtained. There are two labels with 

1 RL L for the 

foreground and 
2 UL L for the background.  

Prior Knowledge Enhanced 

Graph G=(V,E)
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Prior Knowledge CT

Walking Range
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Association Matrix A

Transition Matrix P
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of transition 
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Output

Figure 1. Framework of prior knowledge enhanced random walk 

1) Prior knowledge from PET 

Tumor confidence region definition: In clinical practice 
and as discussed by Boellaard [12], a region with 80% 
SUVmax in PET images is considered to belong to a tumor. In 

our method, the tumor confidence region 
RQ  is extracted 

automatically from PET by using TCD, which is able to 
separate the tumor from surrounding tissues where there is a 
high SUV e.g the heart. The tumor confidence region is then 
mapped onto CT and the corresponding pixels on CT are used 

as foreground seeds. RQ  also has effects on the association 

matrix A  and the transition matrix P  between two pixels by 

decreasing the weight of region outside 
RQ .  

Background seeds and walking range definition: The 
contour of 10% SUVmax extracted by TCD is mapped onto the 

CT image and used as background seeds labeled as UL . In 

addition, the contour also serves as the walking range of the 
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random walker to limit the traveling range and hence to speed 
up the calculation.  

2) Construction of transition matrix: 

Since the higher the association possibility between a 
RL  

candidate and 
RQ  is, the greater the transition probability that 

a random walker arrives at it. Therefore the nodes outside the 

tumor confidence region 
uR RQ I Q   are assigned a weight 

factor (0,1)  , and the association matrix A  between two 

nodes is defined as  

 

0,  

0,  & ( , )

,  & ( , )

,  & ( , )

i j

i j i j

ij

ij i R i j

ij i uR i j

v v

v v v v E
a

w v Q v v E

w v Q v v E




 
 

 
   

 (5) 

Then the transition matrix [ ]ij n np P  is obtained by 

row-normalized A . However, after row normalization, the 
factor  is lost. Therefore, when the matrix P is defined 

according to equation (6), the rows corresponding to 
uRQ  are 

multiplied by factor   again. It is obvious that when   

increases from 0 towards 1, the impact of 
RQ  decreases. The 

value of   is obtained by the training datasets. 

 
R uR P P P  (6) 

Therefore, with the final state reformulated according to 

Equation (2), the probability [ ]k

i kiB  Π  is obtained where 

 
1( (1 ) (1 ) )R uR        Π I P P  (7) 

Finally, by assigning the decision rule arg max
k

k

i i
L

R   to 

each pixel
ix , the segmentation result is obtained. 

An overview of the prior knowledge enhanced graph 

construction process and the different transition states for 
RQ  

and 
uRQ  at time 1t   are illustrated in Figure 2.  
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Figure 2. Illustration of the construction of the transition matrix. Blue labels 

indicating the tumor confidence region RQ while white labels indicating uRQ .  

III. EXPERIMENTAL EVALUATION 

A. Clinical data 

We used 20 PET-CT NSCLC cases including ten simple 
cases, where the tumor was located in the lung parenchyma 

but with no involvement of adjacent structures; all with 
ground truth (GT) i.e pathological confirmation; eight out of 
ten complicated cases with GT. The complicated cases 
included five with chest wall involvement; three with 
involvement of the mediastinum and two where the tumor 
was attached to the chest wall and the mediastinum. These 
studies are from a Biograph True V 64-slice PET-CT scanner 
(Siemens Medical Solutions). The CT scans were 

reconstructed using a matrix of 512  512 pixels with pixel 

size of 0.98 mm  0.98 mm  2 mm. The PET scans were 

reconstructed using a matrix of 168  168 pixels with pixel 

size of 4.07 mm  4.07 mm  2 mm. The PET volumes are 
registered to the corresponding CT volumes based on the 
affine transformation from Insight Toolkit (ITK).  

The proposed method was performed on 2D images and 
conducted by using MATLAB R2010b on the processor with 
Core i5-2400 CPU @ 3.10GHz, installed memory (RAM) 
4.00GB. 

B. Experimental results and Discussion 

1) Parameters Selection 

There were two free parameters in our model. For the 
restarting probability  , we set the same value with RWR 

[10] for comparison.  

The selection of the association weight factor   was 

based on the training of 18 cases with GT, by verifying the 
values of   from 0.35 to 0.9 and the higher the value is, the 

less the PET prior would be considered. The accuracy was 
measured by average Dice similarity coefficient (DSC) of the 
segmentation on CT with manually selected foreground and 
background seeds. As shown in Figure 3, when   was around 

0.65 (marked as red spot), the segmentation was stable and 
reached high accuracy. Therefore,  was set as 0.65 in our 

experiments. 

 

Figure 3. Parameter   value selection 

2) Quantitative validation 

The segmentation results of the three methods were 
compared (see Figure 4) including 8 complicated cases 
shown case by case, average DSC for the 10 simple cases and 
for the overall cases. Compared with RW, the RWR produced 
slightly improved overall segmentation accuracy for the CT, 
which was mainly because the texture information of the 
foreground seeds was not sufficient when compared with the 
natural images in [11]. For the simple cases, RW 
outperformed RWR because the walking range for RWR was 
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too large. The PKE-RW outperformed RWR due to the prior 
tumor related information from PET.  

 
Figure 4. DSC comparison of RW, RWR and PKE-RW. Cases 1-8 indicate 
the complicated cases, A-S is the average DSC of the 10 simple cases and 

A-O is the average of the overall 18 cases  
 

Furthermore, because our method limited the walking 
range, the walker would not travel around the whole image, 
and thus our PKE-RW, on average, used 1.56 seconds for 
segmentation when compared to 4.36 seconds for RWR. RW 
took the shortest average time, 1.49 seconds, because the 
graph is four-connected.  

3) Qualitative Validation 

The segmentation results for the complicated cases including 

Case 1 in Figure 4 where tumor is adjacent to the 

mediastinum (see Figure 5), Case 2 and Case 3 in Figure 4 

where the tumors are attached to chest wall (as shown in 

Figure 6) and Case 4 where tumor is adjacent to/involves the 

mediastinum and the chest wall (see Figure 7).  
RW RWR PKE-RW GT 

    
Figure 5. The case when the tumor is adjacent to mediastinum, corresponding 
to case 1 in Figure 4.  

 

RW RWR PKE-RW GT 

    

    
Figure 6. The cases when the tumor involves the chest wall. First row is case 

2 and second row is case 3 in Figure 4.  

 
RW RWR PKW-RW GT 

    
Figure 7. The case when the tumor involves the chest wall and the 

mediastinum. Corresponding to case 4 in Figure 4.  

IV. CONCLUSION 

We present an enhanced RW model that fully utilizes the 
prior knowledge on PET for lung tumor segmentation from 
low-contrast CT. The influence of the tumor confidence 
region and the walking range were used and the foreground 
and background seeds were obtained based on the PET 
automatically. Our results show that segmentation accuracy 
and speed were improved.  
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