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Abstract— Ultrasound lesion segmentation is an important 

and challenging task. Comparing with other methods, 

region-based level set has many advantages, but still requires 

considerable improvement to deal with the characteristic of 

lesions in the ultrasound modality such as shadowing, speckle 

and heterogeneity. In the clinical workflow, the physician would 

usually denote long and short axes of a lesion for measurement 

purpose yielding four markers in an image.  Inspired by this 

workflow, a constrained level set method is proposed to fully 

utilize these four markers as prior knowledge and global 

constraint for the segmentation. First, the markers are detected 

using template-matching algorithm and B-Spline is applied to fit 

four markers as the initial contour. Then four-marker 

constrained energy is added to the region-based local level set to 

make sure that the contour evolves without deviation from the 

four markers. Finally the algorithm is implemented in a 

multi-resolution scheme to achieve sufficient computational 

efficiency. The performance of the proposed segmentation 

algorithm was evaluated by comparing our results with 

manually segmented boundaries on 308 ultrasound images with 

breast lesions.  The proposed method achieves Dice similarity 

coefficient 89.49±4.76% and could be run in real-time. 

I. INTRODUCTION 

Breast cancer is the second leading cause of death of 
women worldwide [1]. To reduce mortality rate early 
detection followed by effective treatment is crucial. 
Ultrasound is often the first-line screening and diagnosis 
modality in low-resource countries as it is more sensitive to 
dense breasts and more accessible. Since ultrasound imaging 
is much more operator-dependent than mammography, 
interpreting ultrasound images requires high-level of 
experience. Therefore, clinical decision support (CDS) tools, 
such as computer-aided diagnosis (CADx) [2] and similar case 
retrieval from a database [3] have been developed to assist 
less-experienced radiologists in making accurate diagnosis.  

Lesion segmentation is an important step in CADx/CDS 
systems because many crucial features for discriminating 
benign and malignant lesions are related to lesion shape and 
margin. However, the artifacts, such as attenuation, speckle, 
shadowing, non-uniform contrast of certain structures and 
high variability of the echogenicity of the lesion, make lesion 
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segmentation a challenging task.  Many approaches for 
ultrasound image segmentation [4-9] have been proposed in 
the past with various levels of success.  One common issue is 
that without sufficient prior knowledge, the iterative energy 
propagation would be trapped into local minimum and would 
fail to delineate the true boundary of lesions when the artifacts 
are present. In the present work, inspired by the clinical 
workflow where physicians often identify lesions with four 
markers, we derived a knowledge-enriched segmentation 
framework. The four markers associated with long and short 
axes of a lesion, are used as prior knowledge and global 
constraint to facilitate the lesion segmentation.  First, the four 
markers are detected automatically. Next, B-Spline is applied 
to fit the four markers as the initial contour. Then, four-marker 
constrained energy is added to the region-based local level set 
[8-9] to make sure that the contour evolves without deviation 
from the four markers. Finally, the algorithm is implemented 
in a multi-resolution scheme to achieve acceptable processing 
time. We demonstrated the improved performance of our 
algorithm by comparing the segmentation results with 
manually segmented boundaries  and other segmentation 
methods [6-7]. 

II. DATABASE 

The breast ultrasound database was constructed from 2011 
to 2012 from the Ultrasound Department of the Western China 
Hospital (Chengdu, China) with the consent of all patients. All 
data were de-identified. The database consists of 308 
pathology-proven ultrasound cases including 194 benign and 
114 malignant breast lesions. In each case there are multiple 
images scanned from different angles and positions among 
which there is one image with four markers to denote long and 
short axes of a lesion. All digital ultrasound images were 
obtained using Philips iU22 ultrasound system and stored in 
DICOM format. The capturing resolution of the ultrasound 
images was 1024×728 pixels. Each monochrome ultrasound 
image was quantized into 8 bits with 256 gray levels. Ground 
truth segmentation was provided by delineating each lesion 
manually by one physician (a co-author (S.S.P.)), with 10-year 
of experience in interpreting ultrasound breast images. For the 
difficult cases, in order to study variability between different 
human observers, 30 cases were segmented manually by two 
other physicians: one expert and one junior physician with 
more than 25-year of experience, and less than 5-year of 
experience in interpreting ultrasound breast images, 
respectively. In these 30 cases, the manual contour of the most 
senior physician is considered as ground truth. 
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III. METHOD 

In the clinical workflow, physicians have to first identify a 
lesion, then input two markers (e.g. cross) to measure the long 
axis of a lesion and two other markers (e.g. star) to measure 
the short axis of the lesion. Based on this workflow, we first 
detect the four markers from the images, then, utilize these 
four markers to generate an initial curve via B-Spline fitting. 
Next, four-marker constrained level-set is used to segment the 
lesion boundary. If the markers are absent or could not be 
detected, the users are prompted to first draw the short/long 
axis of the tumor, and then the proposed segmentation method 
is triggered. The flow chart of the proposed lesion 
segmentation is shown in Figure 1. 

 

Figure 1.  The flow-chart of the proposed lesion segmentation 

A. Detection of four markers 

To automatically detect the four markers, the following 
algorithm was applied: 

a) Detect the ultrasound echo data region (the region 
with image content) from the original DICOM 
image 

b) Create a binary image of the ultrasound echo data 
region 

c) Detect markers based on rotational symmetry with 
respect to the centroid 

d) Detect two types of high-quality (not noisy) markers 

e) Test whether long and short axes intersect with each 
other to remove false markers 

Most markers present rotational symmetry. In order to 
detect markers fast and robustly, the 2-dimensional markers 
are projected into 1-dimension via radon transformation. 
Based on the projection angle and the number of modes exist 
in different projection space, we are able to differentiate 
different types of makers  In case when markers are noisy (in 
our dataset about 5% of the cases) and are outside of the echo 
data, template matching algorithm is applied. The formula of 
normalized cross-correlation between the template and the 
image is given as below: 
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where   is the image,   is the template,  ̅ is the mean of the 

template,  ̅ is the mean of  (   ) in the region under the 
template. The similarity measure between the template and the 
image is computed and has a value between -1 and +1. 

B. Four-marker constrained level set method 

As Chan and Vese mentioned in [10], global region-based 
active contour method models the foreground and background 
regions statistically and find an energy optimum where the 
model best fits the image. Assuming that the image  (   ) is 
formed by the foreground and background, the energy 
function  (     ) is defined as 
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where   is the evolving contour,   and   are the mean values 
of image intensities inside and outside    respectively,     
      and    are fixed parameters which should be larger than 

zero,  ( ) is the length of the curve  ,  (      ( )) is the 

area of the inside region. The first two terms are regularizing 
and the last two terms are internal energy terms. 

However, global region-based active contour that models 
the object using global statistics cannot segment 
heterogeneous objects correctly which frequently occur in 
ultrasound breast images. Using only global statistics would 
lead to boundary leak.  

Lankton and Tannenbaum [8] proposed a local 
region-based active contour method which allows the 
foreground and background to be described in local areas 
instead of in one global area, which leads to the construction 
of a family of local energies at each point along the curve. 
Each local area is split into local interior and exterior areas by 
the evolving curve computing the local energy.  The total 
internal energy is the sum of local energy for every local area 
along the evolving curve. Assuming that the image  (   ) is 
defined on the domain Ω, and   be a closed contour 
represented as the zero level set of a signed distance function 
         {(   )| (   )   } , the interior of   is 
specified by the following approximation: 
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The exterior of   is defined as (1-  ( (   ))). The area 

just around the curve could be denoted by the following 
function: 
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The energy function is defined as 
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 is the mask of local regions, 

  is the first spatial variable to replace (   ) and    is the 

second spatial variable.  (   ) will be 1 when the point   is 

within a ball of radius   centered at  .  ( ( )  ( )) is the 

internal energy like Chan and Vese’s internal energy. The 

second term is a regularization term. 

Local region-based active contour that models the object 
using local statistics can segment heterogeneous objects 
correctly, but is sensitive to the initial curve and overlapping 
intensity between foreground and background. In addition, the 
accuracy is dependent on the size of the predefined local 
region. Furthermore, the computation can be time-consuming.  

Thus, in our approach, first, we use B-spline fitting on the 
four markers to create an initial contour, which could be much 
closer to the true lesion boundary.  

Then, to improve the local region-based active contour, 
four constrained energies centered at four markers are added 
to the total active contour energy to ensure contour evolving 
without deviation from the four corners. These constrained 
terms are defined as Gaussian functions:  
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where (     ) is the position of marker,   is the height of the 
Gaussian,   is the standard deviation which is set as half of 
short axes of the lesion. 

Finally, the proposed segmentation algorithm was 
implemented in a multi-resolution scheme, where the 
segmented lesion boundary in the coarse level is used as the 
initial contour for the subsequent finer level applying linear 
interpolation. The final segmentation result for the lesion is 
obtained in the finest level. The number of the decomposition 
level is automatically adjusted according to the size of the 
lesion, the maximum number of the decomposition level is 3. 

IV. RESULTS 

The performance of the segmentation algorithm is 

assessed by comparing the computer-segmented contour with 

the manual-segmented boundary. Four similarity measures, 

i.e., Dice similarity coefficient (DSCE), miss fraction (MF), 

extra fraction (EF) [8] and Hausdorff distance (HD) [12], 

were calculated for quantitative analysis of the segmentation 

result.  These measures are defined as the following: 
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where SEG and REF denote the area enclosed by the 

computer- segmented region and by the manual-segmented 

region, respectively. The larger DSCE the result has, the more 

overlapping the two regions have. With the smaller MF, the 

less lesion part is missing; and with the less EF, the less 

normal tissue part is falsely segmented as lesion. The 

Hausdorff distance is to determine the degree to which two 

shapes differ from one another. Assuming two point sets 

  {       }   {       } defining two contours of 

segmentations, the Hausdorff distance   (   ) is defined as 
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To test the proposed marker detection algorithm, we have 

used 308 images with four markers and 1501 images without 

four markers. To test the proposed constrained level set 

algorithm, 308 images were used to compare 

computer-segmented contours with manual-segmented 

boundaries. 

The sensitivity and specificity of the marker detection was 

100% and 100%, respectively.  
Figure 2 shows an example lesion segmented by the 

proposed and other methods [6-7]. Table I summarizes the 
quantitative segmentation results for the proposed and other 
approaches. It can be seen that better results were achieved by 
our proposed method.  In the 30 difficult cases, our algorithm 
delivers comparable segmentation accuracy with respect to 
contours created by the expert physician (see Table II). 

The test platform was CPU Intel® Xeon® X5672 

@3.20GHz with 4 cores, RAM of 8 GB and 64-bit operating 

system.  With multi-resolution and C++ multi-threading 

configuration, the proposed method takes about 0.5~1.5 

second to segment a breast lesion in one image depending on 

the size of the lesion. 
 

       

     
Figure 2.  Results of lesion segmentation: (a) is the original image with four 

markers which were used to denote long and short axes of the lesion, (b) 

manual-segmented lesion, (c) segmentation by the proposed method (d) 
Giger2001’s result [6]. (e) GVF-Snake’s result [7]. 

TABLE I.  QUANTITATIVE RESULT OF LESION 
SEGMENTATION BASED ON 308 CLINICAL IMAGES WITH 

GROUND TRUTH (MANUAL) SEGMENTATION 

 DSCE (%) MF    (%) EF(%) HD 

Our method 89.49±4.76 13.12±7.36 6.04±6.79 36.14±25.97 

GVF-Snake 79.94±8.81 13.99±9.95 29.86±17.9 60.09±28.71 

Giger2001 78.87±11.61 10.80±12.87 35.86±49.36 56.08±31.51 

Note: the result is denoted as mean±std * 100%. 

a b c 

d e 
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TABLE II.  COMPARISON OF THE PROPOSED SEGMENTATION 
WITH MANUAL SEGMENTATION OF EXPERTS FOR THE 30 

DIFFICULT CASES 

 DSCE (%) MF    (%) EF(%) HD 

a) 85.89±7.14 9.05±9.15 22.05±22.66 70.31±43.68 

b) 87.16±7.19 9.15±9.26 18.5±20.54 63.97±47.40 

c) 85.00±7.42 15.65±12.12 13.92±15.61 82.25±57.22 

Note: manual contour of the most senior physician (25-year experience) is 

considered as ground truth; a) results from the junior physician (5-year 

experience); b) results from the expert physician (10-year experience); c) 

results from the proposed method. 

V. DISCUSSION 

In this paper, we use ultrasound breast lesion 

segmentation as an example to demonstrate a clinical 

workflow-driven segmentation scheme. This automatic lesion 

segmentation method incorporates the essential elements that 

are indispensable part of the clinical workflow, and thus 

improve the segmentation accuracy considerably. The 

proposed approach achieves segmentation performance with 

DSCE 89.49% for the 308 cases. For the difficult 30 cases 

(out of the total database), the proposed method achieves 

comparable performance as that of a junior physician at least 

based on DSCE. After a discussion with a senior physician, 

the intrinsic reasons that would contribute to the challenges in 

segmentation of these difficult cases are: 1. some malignant 

lesions do not have capsule, thus there is no clear boundary 

between the lesion and surrounding tissue. 2. there might 

exist inflammation area between lesion and normal tissue. 

One major limitation of our algorithm is the assumption that 

the four markers are placed approximately in the lesion 

boundary by a physician.   

The above preliminary results have shown promise in 

segmenting breast lesions exhibiting variety of appearance. 

Future work would be to extend this framework to 3D and to 

ultrasonic images of other organs. For 3D lesion 

segmentation, a physician most likely will be asked to place 

more markers then four on the image volume.  
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